
COMP6237 – Mining Data Streams

Shoaib Ehsan

s.ehsan@soton.ac.uk

(Lecture based on chapter 4 of Leskovec et al. “Mining Massive Datasets”, 3rd edition)

mailto:Brede.Markus@gmail.com

COMP6237: Mining Data Streams

●Outline:

– Motivation + Applications

– Why is mining streams difficult?

– Sampling data from a stream

– Filtering streams – Bloom filters

– Counting distinct elements in a stream:
Flajolet-Martin algorithm

– Summary

Motivation

●So far: most algorithms covered assume that data

can be accessed in a data base

●Here: assume that data arrive in a stream and is

lost forever if not processed immediately (and

cannot all be stored in active storage)

stream processor

standing
queries

Ad-hoc queries

1,5,2,8,...

a,k,e,f,...

1,0,0,1,...

Limited working
storage

archival
storage

output streams

Examples

●Sensor data

– Ocean sensor + GPS to report surface height

● E.g. reading of 4 bytes every 1/10 sec → 3.5MB/day → manageable

– 1 million of such ocean sensors

● 3.5 TB/day → ?

●Image data

– Satellite data

– Surveillance cameras (6 million in London alone!)

●Internet traffic

– Switches … traffic routing, detecting attacks

– Search engines … data mining on search queries? E.g. spread of the
flu.

Queries

●Standing queries

– Predetermined queries, can customize stream
processor for it

– E.g.: ocean sensor to report temperatures

● Alert whenever temperature > 25 degrees →
easy, only last stream element involved

● All time average? → easy, only need to keep
track of number of readings and sum.

● Max. temperature ever recorded? → store
current max and compare new readings.

Queries

●Ad-hoc queries

– Questions asked once about current status of
stream, may not be known beforehand.

– Often use sliding window approach (e.g. store n
most recent elements or elements that were
streamed after time t, etc.)

– Often better to have approximate answer than
exact answer

– → most of these techniques involve clever use of
hashing

Sampling from Streams

Sampling from a Stream

●Problem:

– Select subset of stream which is statistically
representative of stream and allow to answer ad-
hoc queries

●Example:

– Search engine receives stream of queries of the
form (user, query, time); can store 1/10 of stream

– “What fraction of typical user queries were
repeated over the last month?”

– Idea: Sample 1/10 of stream ...

Sampling from a Stream (2)

●Suppose typical user has issued s queries + d queries twice (and none

more than twice).

– Answer is that fraction d/(s+d) has appeared twice.

●What are we likely to find in our 1/10 sample?

– s/10 queries issued once

– d/100 queries issued twice

– Of queries issued twice in full stream d*2*1/10*9/10=18d/100 will
appear once in sample

– Sample gives us answer: d/(10s+19d) of queries have appeared
twice.

●→ This type of query cannot be answered by randomly sampling

queries from the stream!

Sampling from a Stream (3)

●How to do better?

– Sample 1/10 of users and store all their queries

– Could do:

● Have a list of users in sample.

● New query: check user in sample? Yes → store. No: with
prob. 1/10 add user to sample and store query.

● Works if we can afford to store list of all users + pay cost
of looking up users in list!

– Use hashing!

● Devise hash function which maps user names to 10
buckets and keep query if user name maps to (e.g.)
bucket 0.

An Aside: Hashing

●A hash function:

– takes an input as a key, which is associated with
a datum or record and used to identify it to the
data storage and retrieval application.

(from wiki page on hashing)

Pros:
 Very fast access
Cons:
 Collisions, so not accurate.

Hashing to Construct Samples

●This is an example of a general problem

– Say stream consists of elements with n components, part of the component is
the key on which selection of the sample is to be based

● In example (user, query, time) user was the “key”

– Make a sample of size a/b by hashing key to b buckets and accept element into
sample if hash is smaller than a.

●What about the sample size?

– 1/10 of the stream might be very large, would rather want to bound by size of
active storage (say t) → fraction of accepted key value would have to vary

– Idea: hash to very large set of values, e.g.: 0,1,…,B-1

– Start with some threshold t (could initially be B)

– At all times sample consists of elements with key h(key)<=t

– If number of elements in sample too large, decrease t and remove elements
which no longer meet h(key)<=t from sample

Filtering Streams

Filtering Streams

●Want to only accept tuples of a stream that meet a

certain criterion and pass it on to another stream

(key, value)

Incoming stream
(e.g. emails)

(e.g. email address, content)

outgoing stream
(e.g. non-spam emails)

Filtering Streams

●Want to only accept tuples of a stream that meet a certain

criterion and pass it on to another stream

– If selection criterion is property of the tuple that can be
calculated → easy to do

– Difficult if property is membership in a set (in particular if that
set is large!) → “Bloom filtering”

●Example: Spam filters for emails

– Stream: (email address, email content)

– Suppose we have 1G of main memory

– Say we have a set S of allowed email addresses; say 1
billion email addresses (cannot be stored in main memory)

Bloom Filtering for Spam Detection

●Preparation:

– Use main memory as bit array of 8 billion bits; initialize bit
array to zero

– Devise a hash function h that maps email addresses to 8
billion buckets

– Set value of bit array to 1 for all hash values of the email
addresses in S.

●Processing:

– If query comes along, check if array[h(email address)]=1 →
accept, otherwise reject.

Bloom Filtering for Spam Detection (2)

●Pro’s:

– Very fast! (cost of query is essentially cost of calculating hash function)

– If element is not in S → array[h(key)]=0, so definitely spam (no false negatives)

●Con’s:

– Cannot remove elements from filter

– Around 1/8th of the values of array will be 1’s

– Suppose array[h(key)]=1.

● Can be in S

● Could not be in S and just accidentally hash to a bit 1 and pass (allows for
false positives)

● Approx. 1/8 of email addresses not in S will get through …

● Could improve this fraction by a cascade of filters!

Bloom Filters

• A Bloom filter is a space-efficient probabilistic data structure, conceived by

Burton Howard Bloom in 1970, that is used to test whether an element is a

member of a set.

• False positive matches are possible, but false negatives are not – in other

words, a query returns either "possibly in set" or "definitely not in set".

Source: https://en.wikipedia.org/wiki/Bloom_filter

Bloom Filters

●A Bloom filter consists of:

– An array of n bits, initially all set to zero

– A collection of k hash functions h1,h2,…,hk. Each hash function maps
keys to n buckets corresponding to the n bits of the bit array

– A set S of m key values

●Initialization:

– Set all bits to zero.

– Take each element of S and set elements of bit array to one for all hash
functions hi(key).

●Processing:

– Test whether a key that arrives is in S by checking if all h1(key),
h2(key),…,hk(key)=1. Otherwise not in S.

Counting the number of distinct elements in a

stream

Counting Distinct Elements in a Stream

●Suppose stream elements chosen from some set S

●Q: How many different elements have appeared in stream?

– Example: Web site gathering stats on number of unique
users over some time frame – maybe amazon (users log
in with unique user name) or google (search queries
identified with IP addresses)

●Obvious solution:

– Store all elements in main memory and count

– Problem if number of distinct elements is too great!

●Idea: Only estimate this number using hashing ...

Flajolet-Martin Algorithm

●Hash elements of S to sufficiently long bit string

– More possible results of hash function than elements in S

●Idea:

– More different elements of stream → more different hash
values.

– As we see more different hash values, it becomes more likely
that one of these values becomes unusual. Here we focus on
“tail length”, number of zeros at the end of the hash

– Let R be the max. tail length seen so far → Estimate that
there are 2R distinct elements in the stream

– Combine estimates of many hash functions.

Flajolet-Martin Algorithm (2)

●Why does this work?

– Prob. that a particular stream element h(a) ends in at
least r zero’s is 2-r.

– Suppose we have m distinct elements in stream. Prob.
that at least one of them has tail length of at least r is (1-
2-r)m~exp(-m 2-r).

● Suppose m much larger than 2r → prob to find tail of
at least length r approaches 1

● Suppose m much smaller than 2r→ prob to find tail of
at least length r approaches 0

– → 2R is unlikely to be either much to high or much too
low.

Flajolet-Martin Algorithm (3)

●How to combine estimates from different hash functions?

– Take expectation of estimates of different hash functions?

● Will not work, typically an overestimate

● Consider r such that 2r>>m. Some prob. p that we discover r to be
the largest number of 0’s at the end of any hash value

● Prob of finding r+1 is at least p/2, but 2R has doubled ...

– Use median?

● Not affected by occasionally large 2R but always power of 2 → not
possible to find a close estimate.

– Combine both!

● Form small groups of hash functions, calculate expectation over
group

● Calculate median over all groups

Flajolet-Martin Algorithm (4)

●Good:

– Do not need to store any stream element! Storage
requirement is one integer per hash function.

– More hash functions → better estimate. Practical
limitation is cost of evaluating the hash functions.

●Bad:

– Only approximate solution.

Flajolet-Martin Algorithm (5)

●Example:

– Consider stream 1,2,1,3

– Hash function: h(x)=2x+2 mod 4 (treated as 3-bit
integer)

– This is not a very good estimate … would need to
calculate for more hash functions to improve.

1 → 0 → 000
2 → 2 → 010
3 → 0 → 000

max tail length is 1 → 2 distinct elements for this hash function

Should ignore these, since when mapping to 0 they
provide no information

Summary

●Stream processing model

●Sampling from a stream

– Issues

– Sliding window technique

– Use of hashing

●Filtering streams → Bloom filters

●Counting distinct elements → Flajolet-Martin

algorithm

	Slide 1
	Slide 2: COMP6237: Mining Data Streams
	Slide 3: Motivation
	Slide 4: Examples
	Slide 5: Queries
	Slide 6: Queries
	Slide 7
	Slide 8: Sampling from a Stream
	Slide 9: Sampling from a Stream (2)
	Slide 10: Sampling from a Stream (3)
	Slide 11: An Aside: Hashing
	Slide 12: Hashing to Construct Samples
	Slide 13
	Slide 14: Filtering Streams
	Slide 15: Filtering Streams
	Slide 16: Bloom Filtering for Spam Detection
	Slide 17: Bloom Filtering for Spam Detection (2)
	Slide 18: Bloom Filters
	Slide 19: Bloom Filters
	Slide 22
	Slide 23: Counting Distinct Elements in a Stream
	Slide 24: Flajolet-Martin Algorithm
	Slide 25: Flajolet-Martin Algorithm (2)
	Slide 26: Flajolet-Martin Algorithm (3)
	Slide 27: Flajolet-Martin Algorithm (4)
	Slide 28: Flajolet-Martin Algorithm (5)
	Slide 29: Summary

