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Abstract

Solutions for problem sheet 3 for COMP6237

1 Additivity of information

Prove that the information measure (slide 8 of the lecture slides) is ad-
ditive: that the information gained from observing the combination of N
independent events, whose probabilities are pi for i = 1....N , is the sum of
the information gained from observing each one of these events separately
and in any order.

solution:
The information measure assigns I = −log2(p) bits to the observation
of an event whose probability is p. The joint probability of a com-
bination of N independent events whose probabilities are p1, ...., pN is∏N
i=1 pi. Thus the information content of such a combination is: Ijoint =

−log2(
∏N
i=1 pi) = −

∑N
i=1 log2pi =

∑N
i=1 Ii. which is the sum of the in-

formation content of all of the separate events.

2 Entropy and information

Consider two independent integer-valued random variables, X and Y .
Variable X takes on only the values of the eight integers 1, 2, ..., 8 and
does so with uniform probability. Variable Y may take the value of any
positive integer k, with probabilities PY = k = 2k, k = 1, 2, 3, ....

• Which random variable has greater uncertainty? Calculate both
entropies H(X) and H(Y ).

• What is the joint entropy H(X,Y ) of these random variables, and
what is their mutual information I(X;Y )?

solution:
The uniform probability distribution over the eight possibilities for X
means that this random variable has entropy H(X) = −

∑8
i=1 pilog2pi =

8×1/8×3 = 3 bits. But the rapidly decaying probability distribution for
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random variable Y has entropy
∑∞
i=1 2−ilog22i =

∑∞
i=1 i2

−i = 2
The latter can be shown with some work using a standard trick by noting
that

∑∞
k=1 = ∂

∂α |α=1

∑∞
k=1 2−αk = − 1

ln 2
∂
∂α |α=1

(∑∞
k=0 2−αk − 1

)
. We

can now use the well-known result for the geometric series
∑∞
k=0 q

k =
1/(1 − q) for −1 < q < 1 and thus find H(Y ) = − 1

ln 2
∂
∂α |α=1

1
1−2−α =

− 1
ln 2

−1
(1−2−α)2

× (−1) × (−1) × ln 2 × 2−α evaluated at α = 1. Inserting

α = 1 gives the final result. The result may appear somewhat surprising,
because H(X) > H(Y ) even though Y allows any positive integer whereas
X allows for only eight possible events.
Since random variables X and Y are independent, their joint entropy
H(X,Y ) is H(X) + H(Y ) = 5 bits, and their mutual information is
I(X;Y ) = 0 bits.

3 Entropy

Assume that we have some random source that emits one of M symbols
with equal likelihood. What is the entropy? Assume a source is restricted
to emitting one of M symbols at a time. What is the distribution of prob-
abilities over these symbols that maximises the average uncertainty of the
receiver?

solution:
Part 1 of the question: The pdf of the given distribution is p(i) = 1/M, i =
1, ...,M . From the lecture, we remember that the entropies are given by
(note that to be consistent with Boltzmann, here I use ln instead of log2

which only differs in a constant factor from the definition using log2)
S = −

∑M
i=1 p(i) ln p(i) = −

∑M
i=1 1/M ln 1/M = lnM . This is Boltz-

mann’s famous formula (which some of you might remember from school.)
– the wiki pages have a bit more of a story around this if you are interested
link to wiki page on Boltzmann.
Part 2: Suppose p(x), x = 1, ...,M is an unknown pdf, i.e. normalized∑M
x=1 p(x) = 1. We are interested in the pdf which maximizes uncer-

tainty, i.e. we aim to maximize S subject to the constraint
∑M
x=1 p(x) =

1. Introducing the Lagrange multiplier λ, we thus aim to maximize
−
∑M
i=1 p(x) ln p(x) + λ(

∑
x p(x) − 1). Taking partial derivatives with

respect to the p(x), x = 1, ...,M , we obtain:

− ln p(x)− 1 + λ = 1 (1)

p(x) = exp(λ− 1) (2)

p(x) = const. (3)

The Lagrange multiplier is to be determined from the constraint, i.e.∑
x p(x) = M exp(λ − 1) = 1, i.e. exp(λ − 1) = 1/M and hence p(x) =

1/M, x = 1, ...,M . Thus, (not surprisingly) the distribution that maxi-
mizes the entropy is the uniform distribution.
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p (1/8), t (1/4), k (1/8), a(1/4), i (1/8), u (1/8)

p (1/8), t (1/4), k (1/8) a(1/4), i (1/8), u (1/8)

p (1/8), k (1/8) t (1/4) a(1/4)  i (1/8), u (1/8)

p (1/8)  k (1/8)  u (1/8) i (1/8)

Figure 1: Figure illustrating the divide and conquer strategy applied to con-
struct an optimal set of questions to encode the Polynesian alphabet.

4 Optimal codes for the Polynesian al-
phabet

Polynesian languages are famous for their small alphabets. Assume a lan-
guage with the following letters and relative frequencies: p(1/8), t(1/4),
k(1/8), a(1/4), i(1/8), u(1/8). What is the per-character entropy for this
language? Design an (optimal, i.e. short) code to transmit a letter.

solution:
We start by developing a set of yes/no questions to identify which letter

has been sampled. For this purpose, we use the divide and conquer strat-
egy discussed in the lecture, always halfing the probability mass. This
procedure is not unique, so you might make other choices than I have
made here. For example, one could proceed as illustrated in Fig. 1. Thus,
the first question is: Is the letter p, t, or k? If yes, we proceed on the left
hand branch of the tree and next ask: Is it p or k? etc. The information
content of each letter then corresponds to the number of questions we have
to ask to identify this letter (or just − ln 1/p(x) for letter x). This yields
the entropy: S = 2× 1/4 log 4 + 4× 1/8 log 8 = 1/2(log 4 + log 8) = 5/2.
Optimal codes can also be read from the tree given in Fig. 1. For my
choice of questions I obtain (and depending on your questions you might
have obtained a different code, but with the same code length for each
symbol): p− 111, t− 10, k − 110, a− 01, i− 001, u− 000.

5 Entropy

Find an example for three random variables X,Y, Z with negative inter-
action I(X;Y |Z) < I(X;Y ) and one for positive interaction I(X;Y |Z) >
I(X;Y ).

solution:

3



My examples are taken from the wiki page for interaction information.

Positive interaction information is typical for common-cause struc-
tures. For example, clouds cause rain and also block the sun; therefore,
the correlation between rain and darkness is partly accounted for by the
presence of clouds, I(rain; dark|cloud) < I(rain; dark).

A prototypical example of negative interaction information has X as
the output of an XOR gate to which Y and Z are the independent random
inputs. In this case I(Y ;Z) will be zero, but I(Y ;Z|X) will be positive
(1 bit) since once output X is known, the value on input Y completely
determines the value on input Z. Thus I(Y ;Z|X) > I(Y ;Z).
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