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Abstract

Solutions for problem sheet 2 for COMP6237 – to be discussed in a
tutorial session.

1 Logistic Regression and model reduc-
tion I

Explore predicting Oscar success of movies using the data set
https://www.southampton.ac.uk/ mb1a10/stats/filmData.txt discussed in
the lecture. Build logistic regression models to predict movie success based
on all predictors given in the data set. Explore model reduction – which
of the predictor (box office takings, critics score, length, budget, country
of origin) should be included in the best model?

solution: The numerical experiment could be run in any software package
you like. A program in R to do this could be:

> data <- read.table ("films.txt", header=T)

> attach (data)

> model1 = glm (Oscar ~ BoxOffice, family=binomial ())

> summary(model1)

This loads the data into R (first line), makes header variables accessible
without referring to the container data (2nd line) and then reproduces the
results shown in the lecture, i.e. we obtain:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.750349 0.256883 -6.814 9.50e-12 ***

BoxOffice 0.011306 0.002507 4.510 6.48e-06 ***

Next, I build the full model including all predictors:

> Fullmodel = glm (Oscar ~ BoxOffice+Budget+Critics+Country+Length, family=binomial ())

> summary (Fullmodel)

We obtain:
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.981440 1.481505 -4.712 2.45e-06 ***

BoxOffice 0.016751 0.003449 4.857 1.19e-06 ***

Budget 0.017038 0.015759 1.081 0.2796

Critics 0.005410 0.007346 0.737 0.4614

CountryEurope 0.914720 1.388378 0.659 0.5100

CountryIndia -0.004290 1.831527 -0.002 0.9981

CountryOther 1.803408 1.563432 1.153 0.2487

CountryUK 2.523901 1.143281 2.208 0.0273 *

Length 0.025874 0.014031 1.844 0.0652 .

Note, that R has automatically used one-hot encoding for the country
of origin category. p-values for the significance of coefficients are very high
for some variables, so I drop variables from the model starting with the
least significant ones. In this case, I first drop country of origin India and
then continue by dropping the least significant predictors in turn. Thus I
construct:

> model6 = glm (Oscar ~ BoxOffice+Budget+I(Country=="Europe")+I(Country=="Other")

+I(Country=="UK")+Length, family=binomial ())

> model5 = glm (Oscar ~ BoxOffice+Budget+I(Country=="Other")+I(Country=="UK")+Length,

family=binomial ())

> model4 = glm (Oscar ~ BoxOffice+I(Country=="Other")+I(Country=="UK")+Length,

family=binomial ())

> model3 = glm (Oscar ~ BoxOffice+I(Country=="UK")+Length, family=binomial ())

> model2 = glm (Oscar ~ BoxOffice+I(Country=="UK"), family=binomial ())

and then evaluate Akaike’s information

> AIC (model1,model2,model3,model4,model5,model6,Fullmodel)

df AIC

model1 2 354.8162

model2 3 342.8864

model3 4 337.4667

model4 5 335.4764

model5 6 333.6773

model6 7 331.5109

Fullmodel 9 334.9651

We find that model 6 has the lowest AIC score, i.e. the model that
best realizes Akaike’s trade-off is the model that includes all predictors
but does not pay attention to whether the movie has been made in India
or not. The regression coefficients for this model are:

>summary(model6)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.145863 1.400860 -5.101 3.38e-07 ***

BoxOffice 0.017437 0.003333 5.232 1.68e-07 ***

Budget 0.018765 0.007656 2.451 0.014242 *

I(Country == "Europe")TRUE 1.074747 0.515653 2.084 0.037138 *

2



I(Country == "Other")TRUE 1.970527 0.617831 3.189 0.001426 **

I(Country == "UK")TRUE 2.673041 0.533214 5.013 5.36e-07 ***

Length 0.027914 0.007886 3.539 0.000401 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note, that I have followed a greedy approach here and depending on
whether you build up or reduce the model you might have arrived at
different results. Best would have been a combinatorial search.

2 Logistic Regression II

A data set has been collected to relate the age of a learner to the out-
come of driving tests. Carrying out logistic regression, somebody obtains
a slope of w=0.01 and an intercept of b = 0.1. What are the chances of a
100 year old applicant to pass the test?

solution:

This is a straightforward exercise in interpreting results from logistic
regression; we only need to remember the inverse of the logistic trans-
form, i.e. p = [1 + exp(−(b + wx))]−1. Inserting numbers I obtain:
p = [1 + exp(−(0.1 + 0.01 ∗ 100))]−1 = [1 + exp(−1.1)]−1 ≈ 0.75.

3 Logistic Regression III

Somebody collects a data set to analyze examination outcomes (discrim-
inating between fail, pass, and repeat) of students on a three year Bsc
degree and carries out multinomial logistic regression the predict the out-
come dependent on the year of study. Results give: (i) intercept (fail)=1
slope (fail)=-1 and (ii) intercept (pass)=3 slope (pass)=-1/2. What is the
chance of a student having to repeat the 3rd year?

solution:
Let the year of study be denoted by x = 3. I first note that possible
outcomes are fail, pass, and repeat, but regression coefficients are only
given for fail and pass. Hence, repeat was the reference category and we
have

log pfail/prepeat = 1− x (1)

log ppass/prepeat = 3− 1/2x (2)

Rewriting:

pfail = prepeate
1−x (3)

ppass = prepeate
3−1/2x (4)
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and using pfail + ppass + prepeat = 1 I obtain

prepeat(1 + e1−x + e3−1/2x) = 1 (5)

or

prepeat = 1/(1 + e1−x + e3−1/2x) = 1/(1 + e−2 + e3/2) ≈ 0.178. (6)

Thus, chances for an examination outcome of repeat for a student in
the 3rd year are around 0.178. Note, that here I have assumed that one
only remembers the ansatz for multinomial logistic regression; the result
could also have been obtained by just inserting values in the softmax
function (from the lecture slides).

4 Model Reduction

Consider the ridge regression problem (slide 34 of the lectures). Derive an
expression for the optimal (augmented) weight vector w. In the formula-
tion for ridge regression on the slide also the bias term in w is penalized.
This is not always desirable. How would the procedure (and the result
derived above) have to be modified to avoid this penalization?

solution:

We are using the notation from the lecture slides, i.e. the augmented
data matrix is X̃ and the un-augmented matrix is X, the augmented pa-
rameter vector w̃, and the regression problem translates into minimizing

E(w̃) = ||y − X̃w̃||2 + α||w̃||2 (7)

= (y − X̃w̃)T (y − X̃w̃) + αw̃T w̃ (8)

= yT y − w̃T X̃T y − yT X̃w̃ + w̃T X̃T X̃w̃ + αw̃T w̃ (9)

= yT y − 2w̃T X̃T y + w̃T X̃T X̃w̃ + αw̃T w̃, (10)

where we have used rules for transposition and the symmetry of the scalar
product (in the last line). Proceed to calculate gradients with regard to
w̃ and equate them to zero:

∂E/∂w̃ = −2X̃T y + 2X̃T X̃w̃ + 2αw̃ = 0. (11)

and we have

X̃T y = (X̃T X̃ + αI)w̃ (12)

w̃ = (X̃T X̃ + αI)−1X̃T y. (13)

This is, btw., where the name ridge regression comes from, because we
are adding a “ridge” to the diagonal of the matrix X̃T X̃.
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How to avoid penalization of the intercept? Recall that in our defini-
tion of the augmented vectors we used x̃ = (x1, ..., xd, 1) and then param-
eterized hyperplanes via x̃T w̃. An error function that does not penalize
the intercept wd+1 is:

E = ||y −
d∑
i=1

wixi − wd+11||2 + α

d∑
i=1

w2
i (14)

= ||y − xTi w − wd+11||2 + wTw. (15)

Differentiating the above equation with regard to wd+1 and equating
to zero, we obtain:

∂E/∂wd+1 = −2
∑
j

(yj − xTj w − wd+11) = 0 (16)

or wd+1 = E[y]− E[x]Tw.
We can insert this expression into Eq. (14) and obtain:

E = ||(y − E[y]1)− (x− E[x]1)Tw||2 + α||w||2. (17)

Solutions to the above correspond to our previous solution, i.e. one
can exclude penalization of the increment or bias term by doing ridge
regression with the centred response vector and centred (unaugmented)
data matrix.

5 Transforming data

Consider the problem of kernel regression (slide 49 of the lecture slides).
Derive the expression for the optimal weight vector w given a transforma-
tion φ.

solution:

This may be somewhat confusing relative to the solution to the previ-
ous problem, but in the following I use the notation from the lecture slides
(slide 49) where the bias term was included as the first component of the
augmented vectors (and not the last as in the previous problem solution).
Suppose we have a transformation φ, then a transformed (augmented)
feature vector for data point i is given by φ̃(xi)

T = (1, φ(xi)
T ) and we

also introduced an augmented transformed data matrix X̃φ comprised of
the transformed data set. Our error function can now be written as

E = ||y − X̃φw̃||2. (18)

= yT y − 2w̃T X̃T y + w̃T X̃T
φ X̃φw̃. (19)

Calculations are now a direct analogue to the case without transfor-
mation. Again differentiating with regard to w̃ and setting derivatives to
zero, we obtain

X̃T
φ y = X̃T

φ X̃φw̃ (20)
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or w̃ = (X̃T
φ X̃φ)−1X̃T

φ y which can be written as w̃ = K̃−1X̃T
φ y.
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