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Abstract

Solutions to the problem sheet for lecture on linear regression and
maximum likelihood estimation. Will be discussed in the tutorial session.

1 Linear Regression I

A data set is constructed by taking 100 samples from a normal distribu-
tion with mean µ = 5 and standard deviation σ = 2 to construct a random
variable Xi, i = 1, , 100. Then, a 2nd random variable Yi, i = 1, , 100 is
constructed by taking the values of the corresponding Xi and adding one
half of a third random variate drawn from a normal distribution with
mean 5 and standard deviation 2 and thus a set of 100 pairs (Xi, Yi) is
obtained. Find the parameters of a linear regression of Y on X (both by
doing the numerical experiment and by calculating the result analytically).

solution: The numerical experiment could be run in any software
package you like. A program in R to do this could be:

> data.X <- rnorm(100,5,2)

> data.Y <- data.X + 0.5 * rnorm (100,5,2)

> reg <- lm (data.Y ~ data.X)

> summary (reg)

In my case the output I obtained was

Residuals:

Min 1Q Median 3Q Max

-3.12731 -0.80066 -0.05604 0.81004 2.49546

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.66818 0.26573 10.04 <2e-16 ***

data.X 0.97903 0.04972 19.69 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.094 on 98 degrees of freedom
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Multiple R-squared: 0.7983,Adjusted R-squared: 0.7962

F-statistic: 387.8 on 1 and 98 DF, p-value: < 2.2e-16

The model is highly significant and I read a slope of m = 0.98 and
intercept of b = 2.67 from this. One could write a script to repeat this
experiment a certain number of times and would then see that the average
result is consistent with m = 1 and b = 2.5.

The result can also be calculated analytically. Recall from the lecture
that if we carry out regression of X on Y , then m = Cov[X,Y ]/V [X] and
b = E[Y ]−mE[X] (where E[.] stands for the expectation of the random
variable). In the problem setting above, X N(5, 2), (say) Z N(5, 2), and
Y = X + 1/2Z. Now we can write

m = Cov[X,Y ]/V [X] (1)

= Cov[X,X + 1/2Z]/V [X] (2)

= (Cov[X,X] + 1/2Cov[X,Z])/V [X] (3)

= V [X]/V [X] = 1, (4)

where I have made use of the linearity of Cov[., .] and have exploited
that Cov[X,Y ] = 0 because X and Z are independent. Further, we have
b = E[X + 1/2Z] − 1 × E[X] = 1/2E[Z] = 2.5 (using that Z N(5, 2)).
Both values are consistent with the numerical experiment.

2 Linear Regression II

Some person wants to conduct a least squares regression on a data set of
N (X,Y ) pairs, but attaches varying importance to deviations of various
(X,Y ) pairs to the line of best fit. The relative importance of deviations
of pair (xi, yi) are given by a function f(i) = fi. Find an expression for
the line of best fit generated by this procedure.

solution:
Using the weight function, we basically want to minimize

E(m, b) =
∑
i

fi(yi −mxi − b)2. (5)

We can proceed in the usual way, by calculating derivatives with regard
to m and b and equating them to zero. We have

∂E/∂m = 2
∑
i

fi(yi −mxi − b) = 0, (6)

or b = Ef [Y ] − mEf [X] (with Ef [X] =
∑

i fixi/
∑

i fi defined as an
f-weighted average). Inserting this into the expression for E(m, b) we
obtain:

E(m) =
∑
i

fi((yi − Ef [Y ])−m(xi − Ef [X]))2 (7)

∂E/∂b = −2
∑
i

fi(xi − Ef [X])((yi − Ef [Y ])−m(xi − Ef [X])) = 0 (8)
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The last line can again be read as Covf [X,Y ] − mVf [X] = 0 or m =
Covf [X,Y ]/Vf [X] (where f-weighted variance and co-variance have been
defined as seen). The result essentially shows that: (i) also with an arbi-
trary weight function, results of linear regression can be calculated ana-
lytically, (ii) all one has to do it to replace variance/co-variance with the
respective weighted counterparts.

3 Linear Regression III

Consider the regression problem in which we have pairs of (xi, yi), xi ∈ Rd

and yi ∈ R (see page 27/28 of the lecture slides). Show that the (aug-
mented) parameter vector w̃ can be obtained from the data matrix X̃ and
the vector of y-values y via w̃ = (X̃T X̃)−1X̃T y.

solution:
We are using the notation from the lecture slides, i.e. the augmented
data matrix is X̃, the augmented parameter vector w̃, and the regression
problem translates into minimizing

E(w̃) = ||y − X̃w̃||2 (9)

= (y − X̃w̃)T (y − X̃w̃) (10)

= yT y − w̃T X̃T y − yT X̃w̃ + w̃T X̃T X̃w̃ (11)

= yT y − 2w̃T X̃T y + w̃T X̃T X̃w̃, (12)

where we have used rules for transposition and the symmetry of the scalar
product (in the last line). Proceed to calculate gradients with regard to
w̃ and equate them to zero:

∂E/∂w̃ = −2X̃T y + 2X̃T X̃w̃ = 0. (13)

It follows w̃ = (X̃T X̃)−1X̃T y, i.e. the above result.

4 Maximum Likelihood Estimation I

Repeated coin tossing of an (unfair) coin produces 100 heads up and 120
tails up. Find a maximum likelihood estimate for the probability that a
coin toss will result in heads up.
solution:
Say we have Nu = 100 coin tosses with heads up and Nd = 120 coin
tosses with heads down. Each coin toss will produce (say) heads up with
probability p; this is the probability we want to estimate using MLE. Let
us define a random variable Xi, such that Xi = 1 if we find heads up
in coin toss number i and Xi = 0 otherwise. Then, the probability of
observing Xi at coin toss i is

Pr{Xi; p} = pXi(1− p)1−Xi . (14)

3



The likelihood function of having observed a sequence X1, ..., XN then is

L(X1, ..., XN ; p) =
∏
i

pXi(1− p)1−Xi (15)

= pNu(1− p)Nd . (16)

Thus,

lnL(Nu, Nd; p) = Nu ln p+Nd ln(1− p). (17)

We can now proceed as usual by calculating the derivative with regard to
p and setting it to zero. We obtain:

∂ lnL/∂p = Nu/p−Nd/(1− p) (18)

= 0. (19)

We see that Nu − pNu = pNd or Nu = pN resulting in p = Nu/N (which
is probably what you would have guessed anyway).

5 Maximum Likelihood Estimation II

A number of observations xi, i = 1, ..., N are known to have been sampled
from an exponential distribution P (x) ∼ exp(−λx). Find a maximum
likelihood estimate for λ.
solution:
First, we should find a normalization for the exponential distribution. We
require that

∫∞
0
p(x)dx = 1 or

∫∞
0

exp(−λx)dx = −1/λ[exp(−λx)]∞0 =
1/λ = 1. If follows that P (x) = λ exp(−λx). All observations have been
drawn from this distribution, thus:

L(x1, ..., xN ;λ) =
∏
i

λ exp(−λxi) (20)

= λN exp(−λ
∑
i

xi) (21)

lnL(x1, ..., xN ;λ) = N lnλ− λ
∑
i

xi. (22)

We can now proceed as usual, i.e. calculate ∂ lnL/∂λ and equate it to
zero. We obtain:

∂ lnL/∂λ = N/λ−
∑
i

xi = 0, (23)

i.e. we have λ = N/
∑

i xi = 1/E[X], which gives the desired maximum
likelihood estimator.
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