COMP6237 Linear Regression and Maximum Likelihood Estimation

January 21, 2021

Abstract

Problem sheet for lecture on linear regression and maximum likelihood estimation. Please attempt to solve/answer before first tutorial on linear regression (in which this problem sheet will be discussed). Worked solutions will be published after the tutorial.

1 Linear Regression I

A data set is constructed by taking 100 samples from a normal distribution with mean $\mu=5$ and standard deviation $\sigma=2$ to construct a random variable $X_{i}, i=1,, 100$. Then, a 2 nd random variable $Y_{i}, i=1,, 100$ is constructed by taking the values of the corresponding X_{i} and adding one half of a third random variate drawn from a normal distribution with mean 5 and standard deviation 2 and thus a set of 100 pairs $\left(X_{i}, Y_{i}\right)$ is obtained. Find the parameters of a linear regression of Y on X (both by doing the numerical experiment and by calculating the result analytically).

2 Linear Regression II

Some person wants to conduct a least squares regression on a data set of $N(X, Y)$ pairs, but attaches varying importance to deviations of various (X, Y) pairs to the line of best fit. The relative importance of deviations of pair $\left(X_{i}, Y_{i}\right)$ are given by a function $f(i)=f_{i}$. Find an expression for the line of best fit generated by this procedure.

3 Linear Regression III

Consider the regression problem in which we have pairs of $\left(x_{i}, y_{i}\right), x_{i} \in$ R^{d} and $y_{i} \in R$ (see page $27 / 28$ of the lecture slides). Show that the (augmented) parameter vector \tilde{w} can be obtained from the data matrix \tilde{X} and the vector of y-values y via $\tilde{w}=\left(\tilde{X}^{T} \tilde{X}\right)^{-1} \tilde{X}^{T} y$.

4 Maximum Likelihood Estimation I

Repeated coin tossing of an (unfair) coin produces 100 heads up and 120 tails up. Find a maximum likelihood estimate for the probability that a coin toss will result in heads up.

5 Maximum Likelihood Estimation II

A number of observations $x_{i}, i=1, \ldots, N$ are known to have been sampled from an exponential distribution $P(x) \sim \exp (-\lambda x)$. Find a maximum likelihood estimate for λ.

