COMP6237 Linear Regression and Maximum Likelihood Estimation

January 21, 2021

Abstract

Problem sheet for lecture on linear regression and maximum likelihood estimation. Please attempt to solve/answer before first tutorial on linear regression (in which this problem sheet will be discussed). Worked solutions will be published after the tutorial.

1 Linear Regression I

A data set is constructed by taking 100 samples from a normal distribution with mean $\mu = 5$ and standard deviation $\sigma = 2$ to construct a random variable X_i , i = 1, ,100. Then, a 2nd random variable Y_i , i = 1, ,100 is constructed by taking the values of the corresponding X_i and adding one half of a third random variate drawn from a normal distribution with mean 5 and standard deviation 2 and thus a set of 100 pairs (X_i, Y_i) is obtained. Find the parameters of a linear regression of Y on X (both by doing the numerical experiment and by calculating the result analytically).

2 Linear Regression II

Some person wants to conduct a least squares regression on a data set of N(X, Y) pairs, but attaches varying importance to deviations of various (X, Y) pairs to the line of best fit. The relative importance of deviations of pair (X_i, Y_i) are given by a function $f(i) = f_i$. Find an expression for the line of best fit generated by this procedure.

3 Linear Regression III

Consider the regression problem in which we have pairs of $(x_i, y_i), x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ (see page 27/28 of the lecture slides). Show that the (augmented) parameter vector \tilde{w} can be obtained from the data matrix \tilde{X} and the vector of y-values y via $\tilde{w} = (\tilde{X}^T \tilde{X})^{-1} \tilde{X}^T y$.

4 Maximum Likelihood Estimation I

Repeated coin tossing of an (unfair) coin produces 100 heads up and 120 tails up. Find a maximum likelihood estimate for the probability that a coin toss will result in heads up.

5 Maximum Likelihood Estimation II

A number of observations x_i , i = 1, ..., N are known to have been sampled from an exponential distribution $P(x) \sim \exp(-\lambda x)$. Find a maximum likelihood estimate for λ .