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COMP6237: Logistic Regression

●Outline:

– Introduction

– Basic ideas of logistic regression

– Logistic regression using R

– Some underlying maths and MLE

– The multinomial case

– How to deal with non-linear data

● Model reduction and AIC

– How to deal with dependent data

– Summary

Problems



Introduction

●Previous lecture: Linear regression

– tried to predict a continuous variable from variation in 
another continuous variable (e.g., basketball ability 
from height)

●Here: Logistic regression

– Try to predict results of a binary (or categorical) 
outcome variable Y from a predictor variable X

– This is a classification problem: classify X as 
belonging to one of two classes

– Occurs quite often in science … e.g., medical trials 
(will a patient live or die dependent on medication?)



Dependent variable Y Predictor Variables X



The Oscars Example

●A fictional data set that looks at what it takes for a movie to win 

an Oscar

●Outcome variable: Oscar win, yes or no?

●Predictor variables:

– Box office takings in millions of dollars

– Budget in millions of dollars

– Country of origin: US, UK, Europe, India, other

– Critical reception (scores 0 … 100)

– Length of film in minutes

– This (fictitious) data set is available here:

– https://www.southampton.ac.uk/~mb1a10/stats/filmData.txt

https://www.southampton.ac.uk/~mb1a10/stats/filmData.txt


Predicting Oscar Success

●Let's start simple and look at only one of the 

predictor variables

●Do big box office takings make Oscar success 

more likely?

●Could use same techniques as below to look at 

budget size, film length, etc.



Introduction (1)

●Could use a linear classifier …

– But this does not give us probabilities, which are desirable if

● We want to handle different error costs between classes

● We need some indication of confidence

● Perfect classification is not possible



Introduction (2)

●Naive approach:

– Code binary variable as 0 or 1, 
do linear regression and 
interpret outcomes as 
probabilities …

– Avoid range problem by 
assuming

● P(x)=0 x<0

● P(x)=1 x>1 ?

– Problems with saturation: once 
we reach boundaries, we 
cannot discriminate any more, 
model becomes insensitive to 
predictor



The Idea

●Can transform predictor variable to something we can do 

linear regression on!

●Want to find a probability Pr(Y=1|X=x)=p(x) for Y to be in 

class 1 (or 0)

– Cannot do linear regression on p directly because of 
range issues

– What about doing regression with log p(x) linear in x? → 
log's only unbounded in one direction (whereas linear 
functions are not)

– Easiest modification of log p that has an unbounded 
range is the logistic transformation

● p/(1-p) is also called “odds”

log Τ𝑝 𝐱 1 − 𝑝 𝐱



An Aside: From Probability to Odds

●Odds are often used in gambling/betting

– Odds = “probability of event”/”probability of not 
event”

●E.g.:

– “9 to 1 against” → p=0.1

– “even odds” → p=0.5

– “3 to 1 on” → p=0.75

●Not scientific parlance, don't write your work up like 

this.



The Logistic Function

𝑦 = log
𝑝

1 − 𝑝

y

p

Is the easiest transform to solve our range problems.



Logistic Regression

●Formally, the logistic regression model is

log
𝑝 𝐱

1 − 𝑝 𝐱
= 𝑏 +𝐰𝐱 𝑝 𝐱 =

1

1 + exp − 𝑏 +𝐰𝐱

𝐞𝟏

𝐞𝟐

𝐱

𝐰

𝐰

Τ−𝑏 𝑤1

0
= 𝐪

𝐱 − 𝐪

𝐷 𝐱 = 𝐱 − 𝐪 Τ𝐰 𝐰

= 𝐱 Τ𝐰 𝐰 + Τ𝑏 𝐰

1.) May want to say Y=1 iff p(x)>=1/2,
which is iff b+wx>=0, i.e., b+wx=0
gives a decision boundary

2.) Distance from decision boundary
is

so logistic regression says that probs
depend on that distance

3.) Boltzmann weights ...   



How to Run Logistic Regression in R

●Will use the Oscar example here, variables of 

interest are Oscar and BoxOffice

●Build the regression model in R and then use 

summary command to see information:

generalised linear model
family is binomial, will understand
this later in the lecture



R Output

logit score for a film that made $0Logit increment per $million in Box Office takings

p value; likelihood for the data to arise if there
Was no relationship between the variables



Making Sense of the R Output

●What is the chance of a film with Box Office 

takings of $50 million to win an Oscar?

– Logit score = -1.75+0.011*50=-1.2

– p = 1/(1+exp(-logit)) =0.23

– → the model predicts that such a film has a 
23% chance to win an Oscar



Using the Other Variables

●What about the other predictor variables?

– Could look at each variable separately with a 
logistic regression model and check if it has 
any explanatory value …

– Better include them jointly to fit all the 
variables in the same model:

– (could handle this for normal linear regression 
in the  same  way)



Likelihood Functions for Log 

Regression

●Can fit the model using MLE

●For each of n training points we have

– A vector of features

– An observed class

– Probability of class yi=1 is p(xi) and yi=0 is 1-p(xi)

●Likelihood function

𝐱𝐢

𝑦𝑖 = 0,1

𝐿 𝑌𝑖; 𝐰, 𝑏 =ෑ
𝑖=1

𝑛

𝑝 𝐱𝐢
𝑦𝑖 1 − 𝑝 𝐱𝐢

1−𝑦𝑖

𝑙 𝐰, 𝑏 = log𝐿 𝑌𝑖; 𝐰, 𝑏 =
𝑖=1

𝑛

𝑦𝑖 log𝑝 𝐱𝐢 + 1 − 𝑦𝑖 log 1 − 𝑝 𝐱𝐢

=
𝑖=1

𝑛

log 1 − 𝑝 𝐱𝐢 +
𝑖=1

𝑛

𝑦𝑖 log
𝑝 𝐱𝐢

1 − 𝑝 𝐱𝐢



MLE for Logistic Regression

●To maximise … need to find

●This is a transcendental equation, cannot solve analytically;

●use some numerical optimisation scheme, e.g., Newton's method.

●More details, cf. http://czep.net/stat/mlelr.pdf

𝑙 𝐰, 𝑏 =
𝑖=1

𝑛

log 1 − 𝑝 𝐱𝐢 +
𝑖=1

𝑛

𝑦𝑖 log
𝑝 𝐱𝐢

1 − 𝑝 𝐱𝐢

=
𝑖=1

𝑛

log 1 − 𝑝 𝐱𝐢 +
𝑖=1

𝑛

𝑦𝑖 𝑏 + 𝐱𝐢𝐰

=
𝑖=1

𝑛

−log 1 + exp 𝑏 + 𝐱𝐢𝐰 +
𝑖=1

𝑛

𝑦𝑖 𝑏 + 𝐱𝐢𝐰

∂𝑙 Τ𝐰, 𝑏 ∂𝑤𝑗 = 0

∂𝑙 Τ𝐰, 𝑏 ∂𝑤𝑗 = −
𝑖=1

𝑛 exp 𝑏 + 𝐰𝐱𝐢
1 + exp 𝑏 + 𝐰𝐱𝐢

𝑥𝑖,𝑗 +
𝑖=1

𝑛

𝑦𝑖 𝑥𝑖,𝑗

=
𝑖=1

𝑛

𝑦𝑖 − 𝑝 𝐱𝐢; 𝐰, 𝑏 𝑥𝑖,𝑗

http://czep.net/stat/mlelr.pdf


The Multinomial Case

●What if we have more than one possible category?

●For each of n training points we have

– A vector of features

– An observed class

– Want to estimate probability that data point i belongs to 
class j

●Each data point must belong to one class

– → have J-1 parameters

– Typically nominate one of the response categories as 
reference mode and estimate ratios

𝐱𝐢

𝑦𝑖 = 1,2, . . . , 𝐽

𝑝𝑖,𝑗 = 𝑃𝑟 𝑌𝑖 = 𝑗


𝑗=1

𝐽

𝑝𝑖,𝑗 = 1

Τ𝑝𝑖,𝑗 𝑝𝑖,𝐽



The Multinomial Case (2)

●Then make linear ansatz for logs

●Can write this in terms of the pij’s:

𝜂𝑖,𝑗 = log Τ𝑝𝑖,𝑗 𝑝𝑖,𝐽 = 𝛼𝑗 + 𝑥𝑖𝛽𝑗

𝑝𝑖,𝑗 = 𝑝𝑖,𝐽exp 𝛼𝑗 + 𝑥𝑖𝛽𝑗

𝑝𝑖,𝐽 
𝑗=1

𝐽−1

exp 𝛼𝑗 + 𝑥𝑖𝛽𝑗 + 1 = 1
𝑗=1

𝐽

𝑝𝑖,𝑗 = 1

𝑝𝑖,𝑗 =
exp 𝛼𝑗 + 𝑥𝑖𝛽𝑗

σ
𝑗=1
𝐽−1 exp 𝛼𝑗 + 𝑥𝑖𝛽𝑗 + 1

Also sometimes called the “softmax” function.

If we need to give a category we can take j
for which pij is largest.



The Multinomial Case (2)

●MLE?

– Introduce “Iverson brackets” [yi=j] = 1 if yi is in 
category j and zero otherwise (for better notation)

– We can then proceed as before and pluck in the 
softmax function ans solve a numerical 
optimization problem to calculate max log L.

– This is often done via stochastic gradient ascent

𝐿 𝑌𝑖; 𝐰, 𝑏 =ෑ
𝑖=1

𝑛

𝑝𝑖,1
𝑦𝑖=1 𝑝𝑖,1

𝑦𝑖=2 . . . 𝑝𝑖,1
𝑦𝑖=𝐽



Review of our Strategy

Original
Y

0 1

Y as a
probability

0 1

Transformed

𝑔 𝑌 ∈ −∞,+∞ −∞ +∞

Linear model for g 𝑔 𝑌 = 𝑚𝑋 + 𝑏



Comments

●Logistic regression is a modelling choice, posit it, then 

check whether it works or has systematic flaws

●Reasons for using it:

– Tradition

– Often works surprisingly well as a classifier (But 
many simple techniques do that …)

– Closely related to exponential family distributions 
(which e.g. arise out of maxent)

– Is problematic if data can be linearly separated (if 
b,w perfectly separates linearly, so does cb,cw with 
c>0; so there is no parameter vector that maximises 
likelihood)



A Note on Generalised Linear 

Models
●Log regression is part of a family of generalised linear models 

(GLMs)

– Conditional distribution of the response falls in some 
parametric family and parameters are set by a linear predictor

– E.g.:

● Ordinary least squares: response is Gaussian with mean 
equal to linear predictor and variance constant

● Log regression: response is binomial with n equal to the 
number of data points with a given x and p given by the 
logistic function

– Changing relationship between parameters and linear 
predictor is called changing the link function; in R this can be 
specified in glm – all fit with same numerical likelihood 
maximisation technique



Summary Logistic Regression

●Use for categorical outcome variables

●Probabilistic interpretation → logistic transform

●Underlying stochastic model: binomial

●Idea of the maths

●Link to GLMs



Non-Linear Data



Problems with Linear Regression

●Linear regression assumes a linear 

relationship between outcome 

variables and predictors; can we deal 

with non-linear data like those? →

●( → transformations of variables,

●fitting polynomials)

●Independence assumption, linear 

regression assumes that effects of 

predictors are independent of each 

other (→ interaction terms)



Non-linear Data: Fitting Polynomials

●Fit a polynomial instead of a straight line

●Same idea as linear regression, just turning one 

predictor (X) into several (X2,X3, …)

●Allows to deal with obvious non-linearity without 

having to specify in advance what transformation 

is

●Intuition for degree of polynomial should come 

from shape of relationship on scatterplot

parabolic
(2nd order)

cubic
(3rd order)

quartic
(4th order)



R practicalities

●1st way:

●(easy to interpret)

●2nd way:

– Uses orthogonal polynomials which are more 
efficient for fitting, but resulting coefficients not 
straightforward to interpret



Example

1st order

3rd order

2nd order

Problem: Higher order models will always do better …end up with matching number of data points?



Occam's Razor

●William of Occam (1288-1348)

●All else being equal, the simplest 

explanation is the best one.

●In statistics this means:

– A model with fewer 
parameters is to be preferred 
to one with more parameters.

– … but this needs to be 
weighed against a model's 
ability to predict.



●Over-fitting

●N-1 predictors enough to replicate 

data. But this is an absurd model 

without explanatory power.

●(if you ask me the height of 

somebody I ask for information about 

his gender, DOB, occupation, 

address, parents, neighbours, 

friends, ...)

●Under-fitting

●Lowest number of predictors we 

can use is to just explain all the 

variation by the mean.

●(no variation explained, if you ask 

me the height of somebody in the 

UK, I say 1.67m ...)



The Machine learning way –

Regularization

●Two reasons to do this:

– Problem ill-posed (more variables than observations)

– Solution does not generalize well

●Redefine optimization problem: add regularization term to 

residuals

●Popular forms of norm:

– Ridge (Tikhonov): L^2 norm (sum squares)

● → force some elements of w to be small

– Lasso: L^1 norm (sum absolute values)

● → typically some elements of w can be forced to zero

𝐸 =
𝑖=1

𝑁

𝑦𝑖 − 𝐰𝐱𝑖
2 = 𝐲 − ෨𝑋 𝐰

2
→ 𝐲 − ෨𝑋 𝐰

2
+ 𝜆 𝐰 Τ1 2



Stats Methods



The old Ways of doing it

●Do model reduction through a series of F-tests, asking if 

models with more parameters explain significantly more 

variation in the outcome variable.

●→ “Step-wise” model reduction.

– Either start with full model and reduce or start with 
simplest model and build up complexity.

– Caveats:

● Complicated ...

● Model one ended up could depend on the starting 
point ...



A better Way?

●Kullback-Leibler divergence:

– Measure of the informational distance 
between two probability distributions

– K-L distance between a real-world distribution 
and a model distribution tells us how much 
information is lost if we describe the real-world 
distribution with the model distribution.

– A good idea to obtain a good model is to 
minimise the K-L distance to the real-world.



Akaike's Information Criterion

●If we had a true distribution F and two models G1 and 

G2 we could figure out which model we prefer by 

calculating K-L distances F-G1 and F-G2;don't know F in 

real world cases, but can estimate F-G1 and F-G2 from 

the data

●AIC is an estimator for the K-L divergence

●Akaike's information criterion:

Number of predictors
– punishes models with many predictors

Maximised likelihood value
(using these predictors)

– rewards fit of model to data

AIC score: the lower the better.



R practicalities

●Very easy to use in R. Suppose we have 

(regression) models m1, m2, m3, …

● invoke: AIC (m1,m2,m3,…)

– This will list AIC values of all the models, 
simply pick the lowest AIC score.

●drop1 (model)

– Is also quite useful. I returns AIC scores for 
dropping each predictor in turn.



Back to the Example

1st order

3rd order

2nd order



Limitations of AIC

●AIC is an asymptotic approximation

– Number of params must be small compared to number of data points

●True model must be in the parameterised family

●Every model f in our family must map to a unique  conditional probability distribution p(data|f)

●Likelihood L(f) function must be twice differentiable

●Use it:

– Linear regression, generalised linear models, constant bin width histogram estimation

●Don't use it for

– Multi-layer neural networks (uniqueness of p)

– Mixture models

– The uniform distribution (differentiability)

●More details, e.g.:

●http://www.csse.monash.edu.au/~dschmidt/ModelSectionTutorial1_SchmidtMakalic_2008.pdf

http://www.csse.monash.edu.au/~dschmidt/ModelSectionTutorial1_SchmidtMakalic_2008.pdf


A more pragmatic strategy ...



Nonlinear Data, Transformations

●Don't work with the raw data for X but with some 

transformation f(X) which will hopefully be closer to linear

– This is a bit like you were finding you were measuring the 
wrong thing, e.g., surface area might be a more direct 
measure of wind exposure than height

●How to know which transformation to use?

– Sometimes there is a theoretical reason

– Some relationships on a scatterplot may look familiar and 
suggest a fix

– Can always experiment with different functions and 
assess them with R2 or AIC



Example



Example

f(X)=log(X)

Correlation coefficient “improved” from 0.65 to 0.95

If relationship with transformed variables “looks more linear”, we will
get a better fit with linear regression.



Example (2)

This time Y increases much faster than X.



Example (2)

This time Y increases much faster than X.
Could try …

exp(X) ?
X2?



Example, cont.

●Can fit regression models for all three cases and 

then use AIC to assess …

●But this is also visually

●apparent ...
log

untransformed

square



Dependent Data



Interaction Terms

●Regression on multiple variables assumes that these 

variables are independent

– i.e. if a predictor variable affects the outcome variable
then its effect is independent of all other predictor 
variables

– E.g. the linear relationship between X1 and Y is 
supposed to hold whatever values all other variables 
X2,X3, … assume

– E.g.: Want to predict happiness from length of marriage

● For men happiness increases with length of marriage

● For women it decreases

● The relationship may be linear, but it is not 
independent of sex



Interaction Terms (2)

●If two predictor variables influence the outcome in 

a way that is not additive we need to include an 

interaction term in the model to capture this effect

●This is the same as epistasis in NK landscapes 

(i.e., cannot say if anchovies improves a pizza 

without knowing if it has prawns on it)



A Species Example

●Say we have two species, red and blue and two environments 1 

and 2

●Species effect: red does better or worse than blue

●Environment effect: avg. fitness in 1 != avg. fitness 2



How to do it in R?

●Will regress Y on X1 and X2 including an interaction 

term X1 by X2

●Equivalent to

●For syntax for more complex situations see

●http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html


When to include Interaction Terms

●If you have a large number of predictors, it is not 

practical to include all interactions

– Due to the combinatorics, you'll quickly have 
more parameters than data points …

– Want to keep them to a minimum

●Include when:

– Theoretical reasons or direct questions that 
need to be answered; or suggested by other 
descriptive stats

– Once in there, up for elimination by model 
reduction

(if an interaction terms stays in the model, 



Example Interaction Terms

●The outcome measure Y (happiness) is dependent 

on the predictor X (length of marriage) but also on a 

categorical variable Group (male or female)



R practicalities

If you are in group A your prediction line is:
Y=33.47+4.38X

If you are in group B your prediction line is:
Y=(33.47+67.29)+(4.38-6.31)X i.e.
Y=100.77-1.77X



R practicalities (2)

Can the model be reduced?

AIC analysis confirms that this is not the case, i.e., 

our preferred model is the one with interactions.



Summary

●What you should remember:

– Aims of logistic regression

● When to apply it.

– Logit transform and why it is used

– Interpreting (R) outputs of logistic regression

– How it actually works.

– You should be able to use it, have a play with the R 
example.

– Ideas how to deal with non-linear and dependent 
data

– Model reduction, AIC



Some Problems

●If you want to experiment a bit more with predicting 

movie success using linear/logistic regression 

models, explore the movie dataset I used in the 

lectures:

https://www.southampton.ac.uk/~mb1a10/stats/film
Data.txt

● I can also recommend two good step-by-step 

tutorials:

– https://www.r-bloggers.com/predicting-movie-
ratings-with-imdb-data-and-r/

– https://rpubs.com/DocOfi/223687

https://www.southampton.ac.uk/~mb1a10/stats/filmData.txt
https://www.r-bloggers.com/predicting-movie-ratings-with-imdb-data-and-r/
https://rpubs.com/DocOfi/223687


Some Problems

●A data set has been collected to relate the age of 

a learner to the outcome of driving tests. Carrying 

out logistic regression, somebody obtains a slope 

of w=0.01 and an intercept of b=0.1. What are the 

chances of a 100 years old applicant to pass the 

test?



Some Problems

●Somebody collects a data set to analyze 

examination outcomes (discriminating between 

fail, pass, and repeat) of students on a three-year 

BSc degree and carries out multinomial logistic 

regression the predict the outcome dependent on 

the year of study. Results give:

●intercept (fail)=1 slope fail=-1

●intercept (pass)=3  slope (pass)=-1/2

●What is the chance of a student having to repeat 

the 3rd year?



Some Problems

●Consider the ridge regression problem (slide 34). 

Derive an expression for the optimal (augmented) 

weight vector w.

●In the formulation for ridge regression on the slide 

also the bias term in w (i.e. component 1) is 

penalized. This is not always desirable. How would 

the procedure (and the result derived above) have to

be modified to avoid this penalization?

●What are the differences between L1 and L2 

regularization?



Some Problems

●Consider the problem of kernel regression (slide 

49). Derive the expression for the optimal weight 

vector given a transformation f.


