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General Plan

– At the start of the course:

● An introduction to regression techniques

● An introduction to information theory

– These lectures are based on the stats package R

● This is free software, you can download it from

https://www.r-project.org/

● If you are not familiar with R, follow a tutorial to get 
some idea:

https://www.southampton.ac.uk/~mb1a10/Rtutorial/R.h
tml

– At the end of the course:

● Mining Data Streams

https://www.r-project.org/
https://www.southampton.ac.uk/~mb1a10/Rtutorial/R.html


COMP6237: Linear Regression

●Outline:

– Brief revision of some basic stats

– Variables and prediction

– The method of least squares (LS)

– Practical implementation in R

– Linear regression in higher dimensions

– Maximum likelihood estimation (MLE)

– LS and MLE

– Weighted LS, Heteroskedasticity, and local 
linear regression

Problem sheet for linear regression and MLE:



Reminder of Some Basic Stats (1)

●Suppose we have a set of N 

observations/measurements

●Can analyse them via histograms/pdfs

●How to classify distributions?

– Means (Median, mode, etc.)

– Variances/standard deviation

– Could use the Central Limit Theorem to argue 
about standard errors, confidence intervals, etc.

𝑋1, 𝑋2,. . . , 𝑋𝑁

𝐸 𝑋 = Τ1 𝑁෍
𝑖=1

𝑁

𝑋𝑖

𝑉 𝑋 = Τ1 𝑁෍
𝑖=1

𝑁

𝑋𝑖 − 𝐸 𝑋 2 = 𝐸 𝑋2 − 𝐸 𝑋 2



Reminder of Some Basic Stats (2)

●We are often interested in relationships between 

pairs of observations

●Can classify relationships in various ways

– Covariance

– Correlation coefficients, e.g. Pearson

– R2 … proportion of variance of X explained by 
knowledge of Y

𝑋1, 𝑌1 , 𝑋2,𝑌2 , . . . , 𝑋𝑁, 𝑌𝑁

𝐶𝑜𝑣 𝑋, 𝑌 = Τ1 𝑁෍
𝑖=1

𝑁

𝑋𝑖 − 𝐸 𝑋 𝑌𝑖 − 𝐸 𝑌

𝑟 =
𝐶𝑜𝑣 𝑋, 𝑌

𝑉 𝑋 𝑉 𝑌



What about Prediction?

●What about if we want to predict the value of one 

variable based on the knowledge about another 

variable?

●This is what regression analysis is all about



Interlude: Types of Variables (1)

●Three types of variables:

– Continuous: real numbered values (e.g., time, 
mass)

– Ordinal: a numerical variable where a small number 
of possibilities are ranked (e.g., school grades, 
Michelin stars)

● Boundaries between first two types can be blurred 
(e.g. most “continuous” variables are really ordinal 
because they can only be measured up to some 
accuracy

– Categorical: describes membership of a group (but 
cannot be ranked). e.g., country of birth, gender, etc.

● Some are binary and others are not



Interlude: Types of Variables (2)

●Whatever form a variable has, they can play 

different roles when we build statistical models

●Dependent or outcome variables

– For our analysis this variable is the focus. It is 
assumed to be predictable from some other 
variables.

●Independent or predictor variables

– Are assumed to have inherent variation (“they 
just are”). We will use them to explain the 
variance in the dependent variables.



Example: Demographic Factors

●Let's assume we want to predict driving test outcomes 

from demographic data.

●For this particular analysis:

– Independent variables: demographic factors like 
gender, age, weight, height, etc.

– Dependent variables: driving test outcomes like 
outcome of the practical/theoretical parts

●Role of variables depends on analysis/model we have in 

mind.

– We could equally well be interested in the inverse, 
i.e., predicting demographic factors based on 
knowledge of driving test outcomes.









LS as an Optimisation Problem

●One might think that minimizing the squared differences 

is a difficult combinatorial optimisation problem … it is not:

●Substituting back:

𝐸 𝑚, 𝑏 =෍
𝑖=1

𝑁

𝑚𝑋𝑖 + 𝑏 − 𝑌𝑖
2 = 𝑚𝑖𝑛!

∂

∂𝑏
𝐸 𝑚, 𝑏 = 2෍

𝑖=1

𝑁

𝑚𝑋𝑖 + 𝑏 − 𝑌𝑖 = 0

𝐸 𝑚, 𝑏 =෍
𝑖=1

𝑁

𝑚 𝑋𝑖 − 𝐸 𝑋 − 𝑌𝑖 − 𝐸 𝑌
2

∂

∂𝑚
𝐸 𝑚, 𝑏 = 2෍

𝑖=1

𝑁

𝑚 𝑋𝑖 − 𝐸 𝑋 − 𝑌𝑖 − 𝐸 𝑌 𝑋𝑖 − 𝐸 𝑋 = 0

𝑚 =
σ𝑖=1
𝑁 𝑌𝑖 − 𝐸 𝑌 𝑋𝑖 − 𝐸 𝑋

σ𝑖=1
𝑁 𝑋𝑖 − 𝐸 𝑋 2

= 𝐶𝑜𝑣 Τ𝑋, 𝑌 𝑉 𝑋

𝑏 = 𝐸 𝑌 −𝑚𝐸 𝑋



Geometric Interpretation

●Have n data points and want that our best “guess” 

fulfills

●Can define vectors

●This says that hat Y is in span {1, X}, but this is 

usually not the case

ෝ𝑦𝑖 = 𝑏 +𝑚𝑥𝑖 , 𝑖 = 1, . . . , 𝑛

𝑋 = 𝑥1, . . . , 𝑥𝑛
𝑇 𝑌 = 𝑦1, . . . , 𝑦𝑛

𝑇 ෠𝑌 = ෞ𝑦1, . . . , ො𝑦𝑛
𝑇 ෠𝑌 = 𝑏1 +𝑚𝑋

𝑋

1

෠𝑌

𝑌

𝜖 = 𝑌 − ෠𝑌 ●Hat Y that minimizes 

deviation e2 is orthogonal 

projection of Y into plane 

spanned by X and 1!



Geometric Interpretation (2)

●Thus, an alternative way of calculating hat Y is by 

projecting Y into this plane. Strategy:

– Projection can be calculated by projecting Y 
onto orthogonal basis vectors of the plane and 
then adding these projections together

– Need orthogonal basis vectors of span{X,1}

●Projection of a vector onto another vector?

𝑝𝑟𝑜𝑗𝑎 𝑏 =
𝑏𝑇𝑎

𝑎𝑇𝑎
𝑎

𝑏 𝑎

𝑏 cos 𝑎, 𝑏

𝑝𝑟𝑜𝑗𝑎 𝑏 =
𝑎

𝑎
𝑏 cos 𝑎, 𝑏 =

𝑏𝑇𝑎

𝑎 2
𝑎 =

𝑏𝑇𝑎

𝑎𝑇𝑎
𝑎



Geometric Interpretation (3)

●To obtain orthogonal basis vectors of span{1,X} 

we use 1 and

●Hence:

𝑋 − 𝑝𝑟𝑜𝑗1 𝑋 = 𝑋 −
𝑋𝑇1

1𝑇1
1 = 𝑋 −

σ𝑖=1
𝑛 𝑥𝑖
𝑛

= 𝑋 − 𝐸 𝑋 = ത𝑋

“centred” vector X

𝑋 = 𝐸 𝑋 1 + ത𝑋

෠𝑌 = 𝑝𝑟𝑜𝑗1 𝑌 + 𝑝𝑟𝑜𝑗 ത𝑋 𝑌

=
𝑌𝑇1

1𝑇1
1 +

𝑌𝑇 ത𝑋

𝑋𝑇 ത𝑋
ത𝑋 = 𝐸 𝑌 1 +

𝑌𝑇 ത𝑋

𝑋𝑇 ത𝑋
ത𝑋

= 𝑏1 +𝑚𝑋 = 𝑏1 +𝑚 𝐸 𝑋 1 + ത𝑋

= 𝑏 +𝑚𝐸 𝑋 1 +𝑚 ത𝑋



Geometric Interpretation (3)

●To obtain orthogonal basis vectors of span{1,X} 

we use 1 and

●Hence:

𝑋 − 𝑝𝑟𝑜𝑗1 𝑋 =
𝑋𝑇1

1𝑇1
1 = 𝑋 −

σ𝑖=1
𝑛 𝑥𝑖
𝑛

= 𝑋 − 𝐸 𝑋

“centred” vector X

𝑋 = 𝐸 𝑋 1 + ത𝑋

෠𝑌 = 𝑝𝑟𝑜𝑗1 𝑌 1 + 𝑝𝑟𝑜𝑗 ത𝑋 𝑌 ത𝑋

=
𝑌𝑇1

1𝑇1
1 +

𝑌𝑇 ത𝑋

ത𝑋𝑇 ത𝑋
ത𝑋 = 𝐸 𝑌 1 +

𝑌𝑇 ത𝑋

ത𝑋𝑇 ത𝑋
ത𝑋

= 𝑏1 +𝑚𝑋 = 𝑏1 +𝑚 𝐸 𝑋 1 + ത𝑋

= 𝑏 +𝑚𝐸 𝑋 1 +𝑚 ത𝑋

𝑏 = 𝐸 𝑌 −𝑚𝐸 𝑋
𝑚 =

𝑌𝑇 ത𝑋

ത𝑋𝑇 ത𝑋



Geometric Interpretation (4)

●What remains to be checked is whether

●Observe that

𝑚 = 𝐶𝑜𝑣 Τ𝑋, 𝑌 𝑉 𝑋

𝑚 =
𝑌𝑇 ത𝑋

ത𝑋𝑇 ത𝑋
=
𝑌𝑇 𝑋 − 𝐸 𝑋 1

𝑋 − 𝐸 𝑋 1 2

=
σ𝑖 𝑥𝑖 𝑦𝑖 − 𝑛𝐸 𝑋 𝐸 𝑌

σ𝑖 𝑥𝑖 − 𝐸 𝑋 2

= 𝐶𝑜𝑣 Τ𝑋, 𝑌 𝑉 𝑋



Regression in Machine Learning

●Slightly different point of view is that we might consider 

the pairs (Xi,Yi) as a training set

●Want to learn a mapping y=f(x) from the training set

●Approach often:

– “somehow” parametrise f(x) (e.g., f(x)=mx+b here) 
and try to learn best parameters m and b

– This is often done via minimising some error function 
E which sums up squared residual errors over 
training set (i.e., this is the same as above)

– e.g., in NN f(x) is a nonlinear function





R Commands ...

●Read data into R with the usual command 

read.table (); the variables of interest are Height 

and BasketballAbility

●Build a regression model with

●regmodel=lm (BasketballAbility ~ Height)

●(lm stands for “linear model”)

●summary (regmodel) gives us most of the 

information we need ...



The Full Output



The Full Output

Characterizes the distribution of “residuals” (differences between
predicted output and actual output)

Should roughly be normally distributed with a mean of zero



The Full Output

The coefficients (“m” and “b”).

Meaning … a man of zero height would have basketball ability 15.7,
Every additional cm of height adds 0.3 to basketball ability.

Also get standard errors, t-tests for hypothesis that values are 0

This is the important test here, i.e.
the hypothesis of a relationship (slope !=0)
is confirmed.



The Full Output
Summary of the analysis, we get

- an R^2 value (variation explained, as expected, see earlier) and
an adjusted R^2 to account for the fact that models with more
parameters are expected to perform better

- Finish with an F-test on the model as a whole with degrees of
freedom 1 and 98 – tests the significance of the model

- Why 1 and 98?
In a data set with 100 data points there are 99 free to vary if

we always want the have the same mean;
Intercept also not free to vary (goes through joint means)

→ 1 DOF for model, 98 for error variance



Generalisations

●Multi-dimensional input?

– “fit” a hyperplane

●A general linear regression

function then is

●For simpler notation we could say

●Hence:

𝑓 Ԧ𝑥 =෍
𝑗=1

𝐷

𝑤𝑗 𝑥𝑗 + 𝑏 = 𝐰𝐱 + 𝑏

෥𝐰 = 𝑤1, 𝑤2, . . . , 𝑤𝐷, 𝑏
𝑇 , ෤𝐱 = 𝑥1, 𝑥2, . . . , 𝑥𝐷, 1

𝑇

𝐸 =෍
𝑖=1

𝑁

𝑦𝑖 − ෥𝐰෥𝐱𝑖
2

𝐱 ∈ 𝑅𝐷 , 𝑦 ∈ 𝑅





Generalisations (3)

●Some practical considerations

– The data matrix X can have large dimensions and 
we might need to calculate an inverse … this can be 
quite time consuming

●Two ways to go about it:

– Often via QR factorization, factorizing

– with Q a diagonal matrix and R an upper triangular 
matrix (can be done via applying Gram-Schmidt 
procedure to column vectors) → for exact solutions

– Alternatively: can use stochastic gradient descent
to numerically minimize residuals

෨𝑋 = 𝑄𝑅



Stochastic Gradient Descent

●Stochastic gradient ascent

●Gradient descent: starting from initial weight 

vector iteratively update

●Stochastic gradient descent: restrict to a single 

point of the training data; processing them in 

random order

𝐸 =෍
𝑖=1

𝑁

𝑦𝑖 − ෥𝐰෥𝐱𝑖
2 = 𝐲 − ෨𝑋 ෥𝐰

2
= 𝐲 − ෨𝑋 ෥𝐰

𝑇
𝐲 − ෨𝑋 ෥𝐰

= 𝐲𝐓𝐲 − 2෥𝐰𝑇 ෨𝑋𝑇𝐲 + ෥𝐰𝑇 ෨𝑋𝑇 ෨𝑋 ෥𝐰

∂𝐸

∂෥𝐰
= −2 ෨𝑋𝑇𝐲 + 2 ෨𝑋𝑇 ෨𝑋 ෥𝐰

෥𝐰𝑡+1 = ෥𝐰𝑡 − 𝜂
∂𝐸

∂෥𝐰
= ෥𝐰𝑡 + 𝜂 ෨𝑋𝑇 𝐲 − ෨𝑋 ෥𝐰𝑡



Stochastic Gradient Descent

●Stochastic gradient ascent

– Instead of

– use gradient at training point k:

●Then, e.g., iterate through training points in 

random order until some tolerance has been 

reached such that (norm) difference between 

updates in the w’s becomes small enough.

∂𝐸

∂෥𝐰
= − ෨𝑋𝑇𝐲 + ෨𝑋𝑇 ෨𝑋 ෥𝐰

∂𝐸

∂ ෥𝐰
𝑥𝑘 = −𝑥𝑘𝑦𝑘 + 𝑥𝑘𝑥𝑘

𝑇 ෥𝐰





Some Comments

●One may have wondered if different results would 

have been obtained when making a different 

choice about the difference function between 

predictions and data points?

– i.e., what if one wouldn't use the sum of the 
squares (~L2 norm) but some other measure? 
→ other results would have been obtained!

●Least squares is a very common strategy in the 

sciences

●Another prominent approach is maximum 

likelihood estimates



Maximum Likelihood Estimation

●Suppose we have a set of n data points X1,…,Xn which 

are from some pdf f(x;p) which has some “hidden” 

parameters p. We want to “guess” these parameters.

●How to go about it? Construct a likelihood function:

●Maximising L will give us a value of p corresponding to 

the most likely explanation of the data

𝐿 𝑋1, 𝑋2, . . . , 𝑋𝑛; 𝑝 =ෑ
𝑖=1

𝑛

𝑓 𝑋𝑖; 𝑝

Likelihood of obtaining the data by sampling from f given the parameter p



Example (1)

●Suppose our observations have been generated from 

a normal distribution with unknown mean and 

variance, i.e.,

●Then the likelihood function is:

●L is max if                          which is if

●Hence the expectation is a maximum likelihood 

estimator for this example.

𝑋 ∼ 𝑁 𝜇, 𝜎2 =
1

2𝜋𝜎
exp

− 𝑥 − 𝜇 2

2𝜎2

𝐿 𝑋1, . . . , 𝑋𝑛; 𝜇, 𝜎
2 = 𝜎−𝑛 2𝜋 Τ−𝑛 2exp

−1

2𝜎2
𝑋1 − 𝜇 2 + 𝑋2 − 𝜇 2+. . . + 𝑋𝑛 − 𝜇 2

෍
𝑖=1

𝑁

𝑋𝑖 − 𝜇 2 = 𝑚𝑖𝑛! 𝜇 = Τ1 𝑁෍
𝑖=1

𝑁

𝑋𝑖



Example (2)

●Suppose we have n observations X1,…,Xn that 

have been sampled from the uniform distribution 

over [0,N] and N is unknown.



Example (2)

●Suppose we have n observations X1,…,Xn that 

have been sampled from the uniform distribution 

over [0,N] and N is unknown.

●Construct likelihood function

●Maximum likelihood estimator?

𝐿 𝑋1, . . . , 𝑋𝑛; 𝑁 = ቊ
0 𝑎𝑛𝑦𝑋𝑖𝑜𝑢𝑡𝑠𝑖𝑑𝑒 0,𝑁
Τ1 𝑁 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Example (2)

●Suppose we have n observations X1,…,Xn that 

have been sampled from the uniform distribution 

over [0,N] and N is unknown.

●Construct likelihood function

●Maximum likelihood estimator is

●A problem of MLE is that estimators can be 

biased … to see this here:

𝐿 𝑋1, . . . , 𝑋𝑛; 𝑁 = ቊ
0 𝑎𝑛𝑦𝑋𝑖𝑜𝑢𝑡𝑠𝑖𝑑𝑒 0,𝑁
Τ1 𝑁 𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁 = 𝑚𝑎𝑥 𝑋1, 𝑋2, . . . , 𝑋𝑛



Example (2)

●Construct pdf for N, start with cumulative pdf:

●Obtain the pdf as

●And hence

i.e., this ML estimator is not unbiased!

𝑃 𝑁 ≤ 𝑥 = 𝑃 𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥, . . . , 𝑋𝑛 ≤ 𝑥

𝑃 𝑁 ≤ 𝑥 = 𝑃 𝑋1 ≤ 𝑥 𝑃 𝑋2 ≤ 𝑥 . . . 𝑃 𝑋𝑛 ≤ 𝑥

𝑃 𝑁 ≤ 𝑥 = 𝑃 𝑋1 ≤ 𝑥 𝑛 = Τ𝑥 𝑁 𝑛

𝑓 𝑥 = Τ𝑑 𝑑𝑥 𝑃 𝑁 ≤ 𝑥 = ቊ
0 𝑥 ∉ 0,𝑁

𝑛 Τ𝑥𝑛−1 𝑁𝑛 𝑥 ∈ 0, 𝑁

𝐸 𝑁 = න
0

𝑁

𝑥 𝑓 𝑥 𝑑𝑥 = න
0

𝑁

𝑛 Τ𝑥𝑛 𝑁𝑛 𝑑𝑥 = Τ𝑛𝑁 𝑛 + 1 ≠ 𝑁!





MLE and LS

●Suppose we know a priori that X and Y have a linear 

relationship except for some noise, i.e.,

●where the epsilons are independent. We aim to find m 

and b via MLE:

● To maximise L we need to minimise the sum of squares 

in the exponent, i.e.,

– Least squares is equivalent to an MLE estimate for 
m and b if X and Y are linearly related with 
Gaussian noise. Sum of squares has a privileged 
position ...

𝑌𝑖 = 𝑚𝑋𝑖 + 𝑏 + 𝜖𝑖 , 𝜖𝑖 ∼ 𝑁 0, 𝜎2

𝐿 𝑋1, . . . , 𝑋𝑛; 𝑚, 𝑏 = 2𝜋 Τ−𝑛 2𝜎−𝑛exp
−1

2𝜎2
෍

𝑖
𝑌𝑖 −𝑚𝑋𝑖 − 𝑏 2



Weighted Least Squares

●Instead of minimising

●one might want to minimise:

●Why?

– To focus accuracy – might be more interested in 
certain X-regions, or errors in some regions 
might be more costly than in others

– There is a number of other optimisation 
problems transformed/approximated by WLS, 
e.g., generalised linear models where the 
response is some nonlinear function of a linear 
predictor (e.g., logistic regression, see later)

෍
𝑖=1

𝑁

𝑚𝑋𝑖 + 𝑏 − 𝑌𝑖
2 = 𝑚𝑖𝑛!

෍
𝑖=1

𝑁

𝑤𝑖 𝑚𝑋𝑖 + 𝑏 − 𝑌𝑖
2 = 𝑚𝑖𝑛!



Homo-/Heteroskedasticity

●Discounting imprecision

– Ordinary least squares assumes y=mx+b+e
with e iid Gaussian white noise. This implies 
that e has constant variance 
(homoskedasticity).

– Often this is not the case → heteroskedastic
data

– Can then set wi=1/s2i so we get the 
heteroskedastic MLE

– (in other words: does not make much sense to 
concentrate on noisy parts of the data, want to 
use parts with little noise for our estimates)



Homo-/Heteroskedasticity –

Examples



An Example in R

●Suppose we have a linear relationship y=3-2x between 
X and Y, and add Gaussian white noise with s(x)=1+0.5x2

plot(x,fit.old$residuals)

As expected, variance is not constant!
Fit misses the real relationship by some margin.

x=rnorm(100,0,3)
Y=3-2*x+rnorm(100, 0, sapply(x,function{x}{1+0.5*x^2}))
plot(x,y)
abline(a=3,b=-2,col=”grey”)
fit.ols= lm(y~x)
abline(fit.ols$coefficients,lty=2)



Weighted Linear Regression

fit.wls = lm (y~x, weights=1/(1+0.5*x*x))
abline(fit.wls$coefficients, lty=3)

weighted regression performs better

unweighted regression

real relationship



How to know the proper weights?

●Somehow know it from measurement device (e.g., 

know precision of the devise for various ranges)

●e.g., in polls or surveys variance of the proportions 

we find should be inversely related to sample size, 

hence can make weights proportional to sample size.

●Try to estimate it from the data, e.g.

– Estimate y(x)

– Construct log squared residuals zi=log(( yi-r(xi))
2)

– Estimate mean of the z's → q(x)

– Use sx
2=exp q(x)



What if the data are not linear?

https://towardsdatascience.com/locally-weighted-linear-regression-in-python-3d324108efbf

https://towardsdatascience.com/locally-weighted-linear-regression-in-python-3d324108efbf


Local linear regression

https://towardsdatascience.com/locally-weighted-linear-regression-in-python-3d324108efbf

https://towardsdatascience.com/locally-weighted-linear-regression-in-python-3d324108efbf




Local Linear Regression (2)

●Often one wants weights to change a bit more 

smoothly than that.

●Kernel regression:

– Cut off Taylor expansion (*) after constant term 
and solve

– Which is solved by

And then set

𝑚𝑖𝑛𝑏෍
𝑖=1

𝑁

𝑤𝑖 𝑥 𝑦𝑖 − 𝑏 2

𝑏 =
σ𝑖=1
𝑁 𝑤𝑖 𝑥 𝑦𝑖
σ𝑖=1
𝑁 𝑤𝑖 𝑥

𝑤𝑖 𝑥 ∝ 𝐾 𝑥𝑖 , 𝑥



Locally Linear Regression (3)

●Take 0st and 1st order terms from (*)

●Often use a tri-cubic kernel

●R functions: lowess (specify fraction f of data 

points included), loess

𝐾 𝑥𝑖 , 𝑥 = 1 −
𝑥 − 𝑥0
ℎ

3 3

(h=1)

plateau

smooth decline



Example

x.sin=runif(100,0,1)
y.sin=sin(10*x.sin)+rnorm(100,0,1)
plot(x.sin,y.sin, xlab=”x”, ylab=”y”)
curve(sin(10*x),col=”grey”,add=”TRUE”)
lines(lowess(x.sin, y.sin,f=1/3),lty=1)
lines(lowess(x.sin, y.sin,f=2/3),lty=2)
lines(lowess(x.sin, y.sin,f=1/6),lty=3)

Some art in choosing f appropriately; but can do quite
a good job.



Local Linear Regression (4)

●When would you actually use this?

– Number of predictors is small

– You don’t want to think too hard about what features to use

– (we will talk about other ways to deal with non-linear data 
later)

● Cons:

– Linear regression is a parametric technique: estimate 
weights from data and can then use to predict

– This is a non-parametric technique (the “data provide the 
function” – basically need to keep data points in memory to 
make predictions)

– Need more data ...



Summary

●Linear regression

– What it is, how it works

– How to judge significance

– Generalisations to higher d’s

●MLE

– Formalisation

– Relationship to LR

●Extensions of linear regression

– Homo vs heteroskedastic data

– Weighted linear regression



Problem (1)

●A data set is constructed by taking 100 samples from 

a normal distribution with mean 5 and standard 

deviation 2 to construct a variable Xi, i=1,…,100. 

Then, a variable Yi, i=1,…,100 is constructed by 

taking the values of the corresponding Xi and adding 

one half of a random variate drawn from a normal 

distribution with mean 5 and standard deviation 2 and 

thus a set of 100 pairs (Xi,Yi) is obtained.

●Q: Find the parameters of a linear regression of Y on 

X (both by doing the numerical experiment and by 

calculating the result analytically).



Problem (2)

●Some person wants to conduct a least squares 

regression on a data set of N (X,Y) pairs, but 

wants attaches varying importance to deviations 

of various (X,Y) pairs to the line of best fit. The 

relative importance of deviations of pair (Xi,Yi) are 

given by a function f(i). Find an expression for the 

line of best fit generated by this procedure.



Problem (3)

●Repeated coin tossing of an (unfair) coin 

produces 100 heads up and 120 tails up. Find a 

maximum likelihood estimate for the probability 

that a coin toss will result in heads up.

●N variables have been sampled from an 

exponential distribution with unknown parameter. 

Find an expression for a maximum likelihood 

estimate for the parameter characterising the 

exponential distribution.


