
COMP6237 – Information Theory and Feature 

Selection

Shoaib Ehsan

s.ehsan@soton.ac.uk

Lecture slides available here:

http://comp6237.ecs.soton.ac.uk/

(I borrowed heavily from Cosma Shalizi to prepare 

this lecture)

mailto:Brede.Markus@gmail.com
http://users.ecs.soton.ac.uk/mb8/stats/datamining.html


Some Information Theory

●Why?

– Understand Kullback-Leibler divergence

– Useful in many other contexts in data mining

●Agenda:

– Information

– Entropy/Coding

– Mutual information

– Using information theory for feature selection

– Summary

– Problems



Information Theory

●To really understand this, we need to know some basic 

stuff from information theory

●… So: What is information?

●Imagine a single piece on a chess board; you don't know 

where it is. How much information is there in knowing its 

location?



Information Theory

●To really understand this, we need to know some basic 

stuff from information theory

●… So: What is information?

●Imagine a single piece on a chess board; you don't know 

where it is. How much information is there in knowing its 

location?
Can approach this as a sequence of YES/NO questions.

Want to ask the minimal number of such questions.

Divide remaining area of chess board into halves, and
ask in which half the piece is. Iterate this until we find the
piece.

We might identify the number of such questions with information.

Given that we have 64 squares, the number of such
questions we have to ask is log264=6



Information Theory

●We can abstract this:

– Assume there is some probability space W

– And a pdf P(w) that assigns a likelihood to each member 
in W

– Say one element has been sampled from P(w)

– How much information is there in knowing what element 
it was (retrospectively)? → Information

● A rare event will be difficult to figure out and thus will 
carry much information

– Alternatively: when sampling an event from P, how 
surprised are we to find certain events? → 
Uncertainty/Surprise

● Rare events will be unexpected and cause much 
surprise



Information Theory  (2)

●What if the probability of the piece being at some 

location is different from other locations?

●e.g., a random source emits one signal A,B,C, or D 

according to

●What is the optimal set of questions to figure out what 

symbol it was?

●How many questions do we need for A,B,C?

●What is the information content in A,B,C?

𝑃𝑟 𝑥 = 𝐴 = Τ1 2, 𝑃𝑟 𝑥 = 𝐵 = Τ1 4 , 𝑃𝑟 𝑥 = 𝐶 = Τ1 8, 𝑃𝑟 𝑥 = 𝐷 = Τ1 8



Information Theory Detour (2)

●What if the probability of the piece being at some 

location is different from other locations?

●e.g., a random source emits one signal A,B,C, or D 

according to

●What is the optimal set of yes/no questions to figure out what 

symbol it was?

– Is it A? If not, is it B? If not, is it C(D)?

●How many questions do we need for A,B,C?

– A: 1=log22, B: 2=log24, C and D: 3=log28

●What is the information content in A,B,C?

– 1 bit, 2bits, 3 bits ...

𝑃𝑟 𝑥 = 𝐴 = Τ1 2, 𝑃𝑟 𝑥 = 𝐵 = Τ1 4 , 𝑃𝑟 𝑥 = 𝐶 = Τ1 8, 𝑃𝑟 𝑥 = 𝐷 = Τ1 8



Entropy

●If we have a probability distribution p(x) x from X we 

can assign information values to each x

●The information of observing x then is log2 1/p(x)

●(like in the chess board example each square had 

chance 1/64; this gives the same value in this case)

●Shannon (1948):

●i.e., entropy of a distribution is the expectation of 

information of the distribution or the average surprise 

when sampling from the distribution

𝐻 𝑝 = −෍
𝑥
𝑝 𝑥 log2𝑝 𝑥 [bits]



Example (1)

●Let's say we toss an unfair coin, heads appears 

with probability p.

●Entropy?



Example (1)

●Let's say we toss an unfair coin, heads appears 

with probability p.

●Entropy? 𝐻 𝑃 = −𝑝ln𝑝 − 1 − 𝑝 ln 1 − 𝑝

Distribution has hardly any information
(since we know what to expect, it's either
almost always heads or tails)

Distribution has maximal information,
we do not know what to expect.

Entropy is thus a measure of uncertainty.



Entropy (2)

●Suppose we have a data stream that emits 

symbols x with according to a probability 

distribution p(x)

●We are looking for an optimal (min. number of 

symbols) encoding of messages from that stream

●Roughly: the entropy of p determines the length 

of such a code through  answers to optimal 

YES/NO questions, symbol length ~ -log

– Frequent symbols get short codes, infrequent 
symbols get long codes



Example

●Back to the previous example:

●What codes would we choose for a binary 

alphabet?

●Can do this by coding our answers to the yes/no

●questions.

–A → 1

–B → 01

–C → 001, D → 000

𝑃𝑟 𝑥 = 𝐴 = Τ1 2, 𝑃𝑟 𝑥 = 𝐵 = Τ1 4 , 𝑃𝑟 𝑥 = 𝐶 = Τ1 8, 𝑃𝑟 𝑥 = 𝐷 = Τ1 8



Entropy Example

●Can use this to analyse text from newspapers

●e.g.,:

– Somebody extracted all words from NYT articles for in 
2004. Let's say we want to build a code based on  
these words and use it to encode articles, say for one 
issue in 2004 and one issue in 2005.

– How can we extract information about these articles?

● Crude approach: “bag of words” idea – count 
frequencies of all words and store them in some 
vector; can then interpret this as a probability vector

● This ignores a lot of fine detail (e.g., correlations 
between words etc.)



Entropy Example

●OK, say we have one such vector

– P(x) for the issue from 2004

– Q(x) for the issue for 2005

●This allows us to evaluate the information content of both 

issues, e.g.

●Can assign information content to words (-log 1/F(x)); most 

frequent words do not carry content, so we expect these 

non content words in equal proportions in 2004 and 2005

෍
𝑥
𝑃 𝑥 log

1

𝑃 𝑥
= 12.94𝑏𝑖𝑡𝑠 ෍

𝑥
𝑄 𝑥 log

1

𝑄 𝑥
= 12.77𝑏𝑖𝑡𝑠



“non content words”



Popularity Comparisons ...





Example, cont.

●Let's quantify the difference:

– Q(x) … prob. of x in 2004, P(x) in 2005

– Averaging over the distribution of words of the 2005  
paper the expected difference in code length is

● If we use the code from 2004 to encode 2005 paper

● If we code using the frequencies from 2005:

log Τ1 𝑄 𝑥 − log Τ1 𝑃 𝑥 = log
𝑃 𝑥

𝑄 𝑥

෍
𝑥
𝑃 𝑥 log

𝑃 𝑥

𝑄 𝑥

෍
𝑥
𝑃 𝑥 log

1

𝑄 𝑥
= 13.29𝑏𝑖𝑡𝑠

෍
𝑥
𝑃 𝑥 log

1

𝑃 𝑥
= 12.94𝑏𝑖𝑡𝑠



K-L Divergence

●Given two probability distributions f(x) and g(x) for a 

random variable x, the K-L divergence (or relative 

entropy) is:

●Comments:

– Compares the entropy of two distributions over 
the same random variable

– Heuristically: number of additional bits encoding a 
random variable with distribution f(x) using g(x)

𝐷 𝑓ԡ𝑔 =෍
𝑥∈𝑋

𝑓 𝑥 log
𝑓 𝑥

𝑔 𝑥



Cross Entropies (1)

●Suppose we want to measure the information 

content of some prob. distribution p(x) but measure it 

based on a code optimal for some other “artificial” 

q(x)

●→ Cross entropy

●→

𝐷 𝑝ԡ𝑞 =෍
𝑥
𝑝 𝑥 log

𝑝 𝑥

𝑞 𝑥

𝐻 𝑝, 𝑞 = −෍
𝑥
𝑝 𝑥 log2𝑞 𝑥

𝐻 𝑝 = −෍
𝑥
𝑝 𝑥 log2𝑝 𝑥

𝐻 𝑝, 𝑞 = 𝐻 𝑝 + 𝐷 𝑝ԡ𝑞



Cross Entropies (2)

●Have seen before that we can see regression 

methods as trying to minimize K-L divergences

●When minimizing K-L against a fixed reference 

distribution p, minimizing K-L is equivalent to 

minimizing cross entropies (→ “Principle of 

minimum cross entropies”)

●Can easily see how this links to estimation 

problems



Cross Entropies + Estimation

●Suppose we have a training set in which the 

empirical frequency of occurrences of outcomes is 

N p
i
and the estimated probability of outcome i is 

q
i

●Likelihood function then is

●

●Maximizing likelihood functions often equivalent 

to minimizing cross entropies

𝐿 𝑞𝑖; 𝑝𝑖 ∝ෑ
𝑖
𝑞𝑖
𝑁𝑝𝑖

Τ1 𝑁 log𝐿 𝑞𝑖; 𝑝𝑖 ∼෍
𝑖
𝑝𝑖 log𝑞𝑖 = 𝐻 𝑝, 𝑞



Conditional Entropy

●Let's say we have two random variables C and X 

which are not independent

●So, if we observe one feature in X this will change 

our knowledge about C, i.e., if we observe x our 

uncertainty about C changes by the conditional 

entropy

●The difference between the entropy of H[C] and the 

conditional entropy H[C|X] is realized information

𝐻 𝐶ȁ𝑋 = 𝑥 = −෍
𝑐
𝑃𝑟 𝐶ȁ𝑋 = 𝑥 log2𝑃𝑟 𝐶ȁ𝑋 = 𝑥

𝐼 𝐶; 𝑋 = 𝑥 = 𝐻 𝐶 − 𝐻 𝐶ȁ𝑋 = 𝑥

(i.e. by how much did uncertainty change due to observing x)



Realized Information

●Is not necessarily positive!

– i.e. suppose C is “it rains today” and the 
probability that it rains is 1/7. Then H[C]=0.59 
bits (check it!)

–Suppose X=cloudy and the probability that it 
rains when it is cloudy is ½. Then 
H[C|X=cloudy]=1

–Realized information from the observation of 
clouds is -0.41 bits, i.e., uncertainty has 
increased.

𝐼 𝐶; 𝑋 = 𝑥 = 𝐻 𝐶 − 𝐻 𝐶ȁ𝑋 = 𝑥



Mutual Information

●Mutual information is the expected information a 

feature gives us about a class

●Some remarks:

–Mutual information is always positive

– Is only zero if X and C are statistically 
independent

– Is symmetric in X and C

𝐼 𝐶; 𝑋 = 𝐻 𝐶 −෍
𝑥
𝑃𝑟 𝑋 = 𝑥 𝐻 𝐶ȁ𝑋 = 𝑥



Example: How much do words tell 

us about topics?

●Let's say we generate bag of words vectors and 

read all articles to classify them into two 

categories, articles about art and articles about 

music.

●Investigate the word “paint”. In how many articles 

in the arts or music categories is the word “paint” 

present

Class c

Indicator X

“paint” “not paint”

art

music

12 45

45

(i.e., we have 57 articles about art and 45 about music, 12 art stories contain paint, no
Music stories contain paint, etc. ...)

0



Words, Topics, Information

●Entropy of C? H[C]=0.99

●H[C|X=”paint”]=0

– i.e., if we find paint, we can be certain that the story is about art

●H[C|X=”not paint”]=1.0

– i.e., if “paint” is absent, we are as uncertain as we are about a fair coin flip (i.e., a 
bit more uncertain as we were before checking for paint with H[C]=0.99)

●I[C;X]=H[C]-Pr(X=1)H[C|X=1]-Pr(X=0)H[C|X=0]=0.99-12/102*0-90/102*1=0.11

– The expected reduction in uncertainty when checking for the indicator X is fairly 
small (0.11 bits)

Class c

Indicator X

“paint” “not paint”

art

music

12 45

450



Finding Informative Features

●This leads to an idea for an information theoretic procedure to find 

important words:

– Count how often each class c=1,…,K appears

– For each word, build the Kx2 table of classes by word indicators

– Compute the mutual information in each table

– Return the m most informative words, i.e. those with the largest 
mutual information

●This might work as a first attempt, but ignores a number of important 

factors, e.g.:

– That combinations of features might be useful

– That some features might be redundant given others

– To remedy these problems we need to look at interactions



Joint and Conditional Entropy

●Joint entropy:

●Remarks:

– This is sub-additive:

– Mutual information:

– Conditional entropy:

●Can also condition mutual information

– i.e., we ask how much information does Y contain 
about C if we “control” for X

𝐻 𝑋, 𝑌 = −෍
𝑥,𝑦
𝑃𝑟 𝑋 = 𝑥, 𝑌 = 𝑦 log2𝑃𝑟 𝑋 = 𝑥, 𝑌 = 𝑦

𝐻 𝑋, 𝑌 ≤ 𝐻 𝑋 + 𝐻 𝑌

𝐼 𝑋; 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻 𝑋, 𝑌

𝐻 𝑌ȁ𝑋 = 𝐻 𝑋, 𝑌 − 𝐻 𝑋

𝐼 𝐶; 𝑌ȁ𝑋 = 𝐻 𝐶ȁ𝑋 − 𝐻 𝐶ȁ𝑌, 𝑋



Interaction

●Conditional mutual information I[C;Y|X] is positive

–But might be smaller/larger/equal to I[C;Y]

– If I[C;Y|X] =I[C;Y]: C and Y are conditionally 
independent given X; otherwise there is an 
interaction between X and Y (regarding their 
information about C)

– I[C;Y|X] <I[C;Y]: Some of the information in Y 
about C is redundant given X

–Use this to define interaction information

– I(C;Y;X)=I[C;Y]-I[C;Y|X]





Venn Diagram for Information 

Content of 2 Random Variables
Overall: H(X,Y)

H(X) H(Y)

H(X|Y) H(Y|X)I(X;Y)

I(X;Y)=H(Y)-H(Y|X)=H(X)-H(X|Y) or
H(X,Y)<=H(X)+H(Y) etc.



Venn Diagram for Information 

Content of 3 Random Variables

H(x)

H(z)

H(y)

Overall: H(X,Y,Z)



H(Y)

H(Z)

H(X)

I(X;Y|Z)=?

This representation is useful to remember relationships between information theoretic measures
for correlated (=”overlapping”) variables.



H(Y)

H(Z)

H(X)

I(X;Y|Z)=H(X|Z)-H(X|Y,Z)

I(X;Y|Z)



Finding Informative Features (2)

●Can use this to improve the algorithm from earlier on, i.e., 

have p features Xi and want to use it to predict C

– Find I[C;Xi]. Select feature with most mutual information 
with C, say X1.

– Given k selected features, calculate I[C;Xi|X1,…,Xk] for 
all non selected variables I

– Select Xk+1 as the feature with most conditional mutual 
information and iterate.

●This is a greedy algorithm, so it does not necessarily come 

up with the best combination of features

●We need to impose a stopping condition, e.g., a threshold for 

I[C;Xi|X1,…,Xk] or a maximum number of features



Summary

●Important to remember:

– How can we quantify information?

– Entropy/Mutual information … and ideally a bit more 
information theory

– Be able to apply these concepts in basic settings (try the 
problems in the next slides)

– Idea of feature selection using information theory.

●Further reading:

– An easily accesible  primer on information theory:

– http://alum.mit.edu/www/toms/papers/primer/primer.pdf

– A more detailed and technical paper:

– http://arxiv.org/pdf/cs/0308002v3.pdf

http://alum.mit.edu/www/toms/papers/primer/primer.pdf
http://arxiv.org/pdf/cs/0308002v3.pdf


Problem (1)

●Prove that the information measure (slide 8) is 

additive: that the information gained from 

observing the combination of N independent 

events, whose probabilities are pi for i = 1....N, is 

the sum of the information gained from observing 

each one of these events separately and in any 

order.



Problem (2)

●Consider two independent integer-valued random 

variables, X and Y. Variable X takes on only the 

values of the eight integers {1, 2, ..., 8} and does so 

with uniform probability. Variable Y may take the 

value of any positive integer k, with probabilities P{Y 

= k} = 2−k, k = 1, 2, 3, …

– Which random variable has greater uncertainty? 
Calculate both entropies H(X) and H(Y).

– What is the joint entropy H(X,Y) of these random 
variables, and what is their mutual information 
I(X;Y)?



Problem (3)

●Assume that we have some random source that 

emits one of M symbols with equal likelihood. 

What is the entropy?

●Assume a source is restricted to emitting one of  

M symbols at a time. What is the distribution of 

probabilities over these symbols that maximises  

the average uncertainty of the receiver?



Problem (4)

●Polynesian languages are famous for their small 

alphabets. Assume a language with the following 

letters and relative frequencies:

– p (1/8), t (¼), k (1/8), a(1/4) i (1/8), u (1/8)

–What is the per-character entropy for this 
language?

–Design an (optimal, i.e., short) code to 
transmit a letter.



Problem (5)

●Find an example for three random variables X,Y,Z 

with

–Negative interaction I(X;Y|Z)<I(X;Y) and one 
for

–Positive interaction I(X;Y|Z)>I(X;Y)


