Data Mining Lecture 12: Finding Independent Features

Jo Houghton

ECS Southampton

March 21, 2019

1 / 28

Finding Features - Topic Modelling

Uncover hidden thematic structure in a collection of documents Helps with

- Searching
- Browsing
- Summarising

A single document will often have more than one topic

Finding Features - Introduction

LSA found *concepts* that were linear mixtures of words associated in different documents.

- Weightings were unconstrained, could be negative
- Difficult to interpret, couldn't give *meaning* to the concept
- Assumes each document will have one topic only

Want to find different *themes* or **topics** for a corpus.

2 / 28

Finding Features - Introduction There are a number of ways to do 'Topic Modelling' Using probabilistic models: Probabilistic LSA Latent Dirichlet Allocation (LDA) (covered in AML) Pachinko Allocation (PAM)

Finding Features - NMF

Topic modelling is like clustering as we group documents into similar sets

However we want *soft* clusters a document should be a weighted mixture of topics

Non-Negative Matrix Factorisation achieves this via a different matrix decomposition

 $A \approx WH$

With PCA and vector quantisation.

5 / 28

Finding Features - NMF Algorithm

 \boldsymbol{W} and \boldsymbol{H} are found by an iterative Expectation Maximisation process

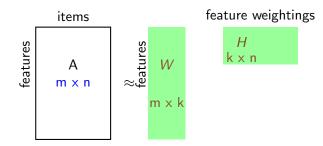
A cost function is minimised:

• Euclidean Norm $||M - WH||^2$

• KL divergence
$$\sum_{ij} (-M_{ij} \log(WH)_{ij} + (WH)_{ij})$$

Lee and Seung 1999, Nature

Finding Features - NMF



 ${\it W}$ contains a ${\it k}$ dimensional feature vector for each of the items

The weightings for each document are in the columns of H

Each basis vector (row of W) can be interpreted as a cluster. Membership of each cluster is encoded in H

6 / 28

Finding Features - NMF Algorithm Algorithm 1: NMF Algorithm with Euclidean distance Data: A ($m \times n$ non-negative matrix),d dimensions to use Initialise W with $m \times k$ random values; Initialise H with $d \times n$ random values; while not converged do $W_{ij} = W_{ij} \frac{(AH^T)_{ij}}{(WHH^T)_{ij}};$ $W_{ij} = \frac{W_{ij}}{\sum_k W_{ik}};$ $H_{ij} = H_{ij} \frac{W^T A_{ij}}{(WHH^T)_{ij}};$ end

This has the effect of minimising the Euclidean norm $||V - WH||_F^2$ subject to $W \geq 0, \ H \geq 0$

Finding Features - NMF Algorithm

Algorithm 2: NMF Algorithm with KL-Divergence

Data: A ($m \times n$ non-negative matrix),d dimensions to use Initialise W with $m \times d$ random values; Initialise H with $d \times n$ random values;

while not converged do

$$W_{ij} = W_{ij} \sum_{k} \frac{A_{ik}}{(WH)_{ik}} H_{jk};$$

$$W_{ij} = \frac{W_{ij}}{\sum_{k} W_{ik}};$$

$$H_{ij} = H_{ij} \sum_{k} W_{ki} \frac{A_{kj}}{(WH)_{kj}};$$

end

This has the effect of minimising the generalized KL Divergence $\sum_{ij} (-M_{ij} \log(WH)_{ij} + (WH)_{ij})$ subject to $W \ge 0$, $H \ge 0$

9 / 28

Finding Features - NMF Algorithm

Other variants can involve:

- ▶ For distance: Use of Bregman divergence (Li *et al* 2012)
- For optimisation: alternating least squares with projected gradient method for sub-problems (Lin 2007)

For constraints:

- Enforcing Sparseness (Hoyer 2004)
- Using background information (Semi-NMF)
- Inputs: Symmetric matrices, e.g. Document Documents cosine similarity matrix (Ding & He, 2005)

Finding Features - NMF Algorithm

Initialisation is usually random.

Different random initialisations can lead to instability

i.e. different results for different runs with the same data and d value.

Improvement was reported using SVD initialisation (Boutsidis and Gallopoulos 2008)

Where:

- W is initialised as $U_d \sqrt{\Sigma_d}$
- \blacktriangleright *H* is initialised as $\sqrt{\Sigma_d} V_d^T$

However, a further study reported that random initialisation was better (Utsumi 2010)

10 / 28

Finding Features - NMF Algorithm

Example:

m3

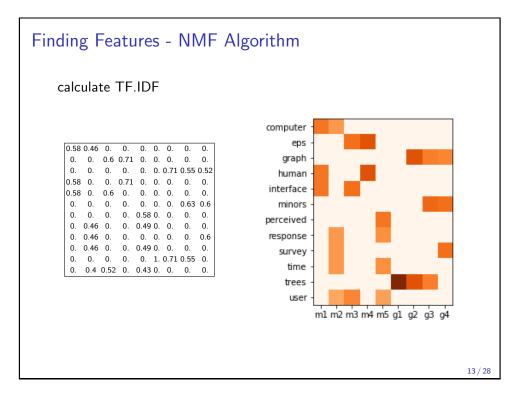
g1

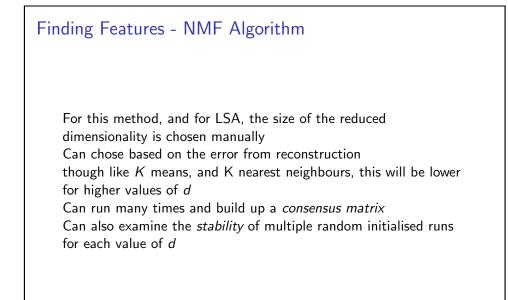
g2

g4

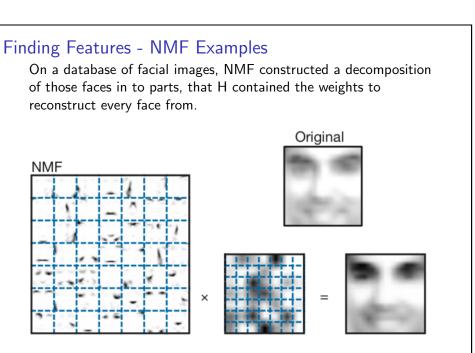
a set of strings:

- m1 "Human machine interface for ABC computer applications"
- m2 "A survey of user opinion of computer system response time"
 - "The EPS user interface management system"
- m4 "System and human system engineering testing of EPS"
- m5 "Relation of user perceived response time to error measurement"
 - "The generation of random, binary, ordered trees"
 - "The intersection graph of paths in trees"
- g3 "Graph minors IV: Widths of trees and well-quasi-ordering"
 - "Graph minors: A survey"





<section-header><text><figure><figure>



(Lee and Seung, Nature, 1999)

Finding Features - NMF Examples

Using a collection of 2,225 BBC news articles with 5 manually annotated topics

So we know d

Top ranked terms for each topic:

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
growth	mobile	england	film	labour
economy	phone	game	best	election
year	music	win	awards	blair
bank	technology	wales	award	brown
sales	people	cup	actor	party
economic	digital	ireland	oscar	government
oil	users	team	festival	howard
market	broadband	play	films	minister
prices	net	match	actress	tax
china	software	rugby	won	chancellor

from http:

//derekgreene.com/slides/nmf_insight_workshop.pdf $_{17/28}$

Finding Features - NMF Examples

IMDB Keyword set for 21,000 films, d = 10Top ranked terms for each topic:

Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
cowboy	bmovie	martialarts	police	superhero
shootout	atgunpoint	combat	detective	basedoncomic
cowboyhat	bwestern	hero	murder	superheroine
cowboyboots	stockfootage	actionhero	investigation	dccomics
horse	gangmember	brawl	policedetective	secretidentity
revolver	duplicity	fistfight	detectiveseries	amazon
sixshotter	gangleader	disarming	murderer	culttv
outlaw	deception	warrior	policeofficer	actionheroine
rifle	sheriff	kungfu	policeman	twowordtitle
winchester	povertyrow	onemanarmy	crime	bracelet

from http: //derekgreene.com/slides/nmf_insight_workshop.pdf

Finding Features - NMF Examples

21,000 news articles relating to the Irish economy. Constructed matrix using *named entities*, d = 8 Top ranked terms for each topic:

Topic 1	Topic 2	Topic 3	Topic 4
nama	european_union	allied_irish_bank	hse
brian_lenihan	europe	bank_of_ireland	dublin
green_party	greece	anglo_irish_bank	mary_harney
ntma	lisbon_treaty	dublin	department_of_health
anglo_irish_bank	ecb	irish_life_permanent	brendan_drumm

Topic 5	Topic 6	Topic 7	Topic 8
usa	aer_lingus	uk	brian_cowen
asia	ryanair	dublin	fine_gael
new_york	dublin	northern_ireland	fianna_fail
federal_reserve	daa	bank_of_england	green_party
china	christoph_mueller	london	brian_lenihan

from http:

//derekgreene.com/slides/nmf_insight_workshop.pdf

18 / 28

Finding Features - NMF Examples

IMDB Keyword set for 21,000 films, d = 10Top ranked terms for each topic:

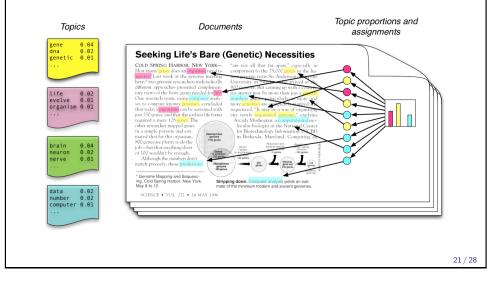
Topic 6	Topic 7	Topic 8	Topic 9	Topic 10
worldwartwo	monster	love	newyorkcity	shotinthechest
soldier	alien	friend	manhattan	shottodeath
battle	cultfilm	kiss	nightclub	shotinthehead
army	supernatural	adultery	marriageproposal	punchedintheface
1940s	scientist	infidelity	jealousy	corpse
nazi	surpriseending	restaurant	engagement	shotintheback
military	demon	extramaritalaffair	party	shotgun
combat	occult	photograph	hotel	shotintheforehead
warviolence	possession	tears	deception	shotintheleg
explosion	slasher	pregnancy	romanticrivalry	shootout

from http:

//derekgreene.com/slides/nmf_insight_workshop.pdf

Finding Features - Probabilistic Models

We model a **document** as a mixture of topics A **topic** is a distribution over words Each **word** in the document is drawn from a topic



Finding Features - PLSA

Probabilistic Latent Semantic Analysis

- ▶ given a corpus
- \blacktriangleright observations are pairs of words and documents (w, d)
- \blacktriangleright each observation is associated with latent class variable c

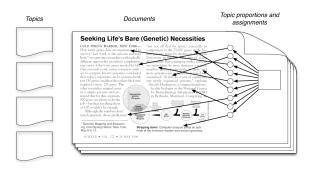
Assumes probability of a co-occurrence of a word and document P(w, d) is a mixture of conditionally independent multinomial distributions

$$P(w,d) = \sum_{c} P(c)P(d|c)P(w|c) = P(d)\sum_{c} P(c|d)P(w|c)$$

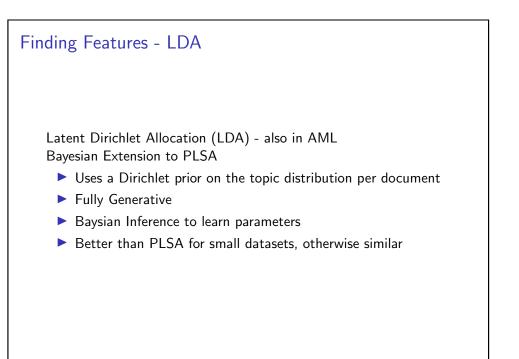
Mathematically equivalent to NMF with KL divergence, hybrid methods more successful (Ding, Li, Peng, 2008)

Finding Features - Probabilistic Models

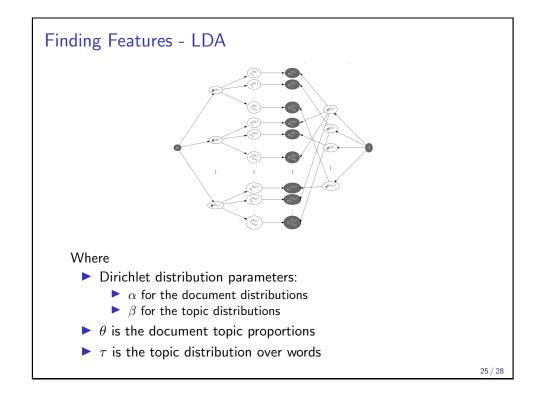
In reality, only the document is visible Topic distributions and assignments are *hidden*



We need to *infer* the hidden variables: i.e. compute the distribution conditioned on the documents p(topics, props, assignments | documents)



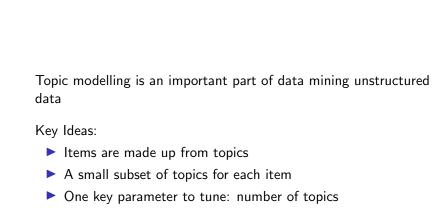
22 / 28



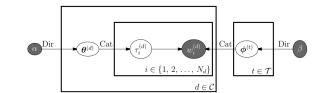
<section-header>Finding Features - LDA Examples Science articles, 17,000 documents, stop words and rare words removed To topic LDA using variational inference 1

http: //www.cs.columbia.edu/~blei/talks/Blei_MLSS_2012.pdf

27 / 28



Finding Features - LDA



Condenses down to a plate diagram

Finding Features - Summary

When the parameters have been inferred, they can be used to generate new documents

26 / 28