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Semantic Spaces – Roadmap
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Finding Features I – Textbook

Programming Collective Intelligence: Building Smart Web 2.0 
Applications T. Segaran. 
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Semantic Spaces – Overview (1/4)

Credit: Jo Grundy
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Semantic Spaces – Overview (2/4)

Credit: Jo Grundy, Jon Hare
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6/34

Semantic Spaces – Overview (3/4)

Credit: Jo Grundy

Latent Semantic Analysis (LSA) using Bag of Words (BoW) & truncated SVD

𝐴!𝐴
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Semantic Spaces – Overview (4/4)

Contrastive Language-Image Pre-training (CLIP) uses an abundantly 
available source of supervision: the text paired with images found across the internet

Deep network

Radford et al. 2021, Learning Transferable Visual Models From Natural Language Supervision 
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Semantic Spaces – Learning Outcomes

o LO1: Demonstrate an understanding of techniques for finding 
independent semantic features, such as: (exam)

v Comprehending the core concepts of Latent Semantic Analysis (LSA) and apply 
LSA on a dataset

v Understanding the key pipeline of Contrastive Language-Image Pre-Training 
(CLIP)

v Discussing the advantages and disadvantages of algorithms like LSA and CLIP

o LO2: Implement the learned algorithms for independent semantic 
feature learning (coursework)

Assessment hints: Multi-choice Questions (single answer: concepts, calculation etc)

o Textbook Exercises: textbooks (Programming + Mining) 
o Other Exercises: https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
o ChatGPT or other AI-based techs 

https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
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Semantic Spaces – Latent Semantic Analysis

Credit: Jo Grundy
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Semantic Spaces – Latent Semantic Analysis

Credit: Jo Grundy
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Semantic Spaces – Recap SVD

Credit: Jo Grundy
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Semantic Spaces – Recap Truncated SVD

Credit: Jo Grundy
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Semantic Spaces – Recap Truncated SVD

Credit: Jo Grundy

𝐴!𝐴
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Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy



17/34

Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy



22/34

Semantic Spaces – LSI

Credit: Jo Grundy
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Semantic Spaces – LSA

Credit: Jo Grundy

An n-gram is a sequence of n words
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Semantic Spaces – LSA

Credit: Jo Grundy, Jon Hare

Histogram of visual words
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Semantic Spaces – LSA

Credit: Jo Grundy, Jon Hare
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Semantic Spaces – LSA

Credit: Jo Grundy, Jon Hare
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)
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CLIP uses an abundantly available source of supervision: the text 
paired with images found across the internet

Radford et al. 2021, Learning Transferable Visual Models From Natural Language Supervision 
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

Radford et al., 2021 

Text encoder: find the latent features of text with a non-linear 
mapping 𝜑(𝑋), where 𝑋 indicates the text raw features

Image encoder: find the latent features of text with a non-linear 
mapping	𝜓(𝑌), where 𝑌 indicates the image raw features
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

Radford et al., 2021 

𝜑

𝜓

Similarity: A = 𝜑 𝑋 𝜓(𝑌)!, where X, 𝑌 indicate the text and image raw 
features, 𝜑 and 𝜓 are the mapping functions of text/image encoder
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

Radford et al., 2021 

𝜑

𝜓

Supervision for training: min	ℓ(𝐴, 𝐺), where 𝐴, 𝐺	are the similarity matrix 
and ground truth, and ℓ is the cross-entropy loss (the lower the closer 
distance from 𝐴 to 𝐺
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

Numpy-like pseudocode for the core of an implementation of CLIP 

Radford et al. 2021, Learning Transferable Visual Models From Natural Language Supervision 
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

Radford et al., 2021 
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Semantic Spaces – Contrastive Language-Image Pre-training (CLIP)

https://openai.com/research/clip 

https://openai.com/research/clip


34/34

Semantic Spaces – Summary

o Latent Semantic Analysis (LSA)
– Shallow Learning Approach: BoW & truncated SVD, Simple and efficient

– Feasible extensions for Multimodal LSA: learns from both image and text data

– Abstract Concepts: represented with linear mixtures of words

– Unconstrained Weights: Weights could be negative, impacting interpretation

– Limited Semantic Interpretation: Topics may lack semantic meaning

o Contrastive Language-Image Pre-training (CLIP)
– Deep Learning Approach: Deep Networks, data- and compute-hungry

– Multimodal Understanding: Learns from both image and text data

– Abstract Concepts: Captures complex semantic relationships

– Challenges in Interpretability: deep learning nature may hinder interpretability


