

Market Basket - Introduction

Why analyse market baskets?
Get insight:

- do products sell quickly or slowly
- which products are sold together?
- which might need a promotion?

Use that to take action:

- store layout
- promotions
- recommendations

Market Basket - Introduction

Market Basket - Introduction

What do we mean?
Association Rules:
if X then Y
$X \Rightarrow Y$
Looking for rules to predict if something X is bought, what else is likely to be bought?

Market Basket - Introduction

Beer and Nappies

Back in 1992 A data consultant was using SQL queries to find things were often bought along side nappies (Diapers in the US), as nappies are high margin, they wanted to sell more of them. They were looking to find things to put on the shelves near each other. She found a correlation between beer sales, and nappy sales, and emailed her colleagues about it.
There was no good statistical basis for this link, but the story has become well known, one of the first to 'go viral'

Market Basket - Introduction

Market Basket analysis:

Given a database of transactions
Find groups of items that are frequently bought together

Each transaction is a set of items, a basket, called here an itemset This allows companies to understand why people make certain purchases

Market Basket - Applications

Insight can be gained about the products they sell

- Which sell quickly or slowly?
- Which are bought together?
- Identify possible missed opportunities

This helps companies to decide on:

- How to layout a shop?
- Which products to promote?
E. g. if one specific product (e.g. "Earl Grey Redbush Tea") is only rarely bought, but when it is bought that same customer spends lots of money on other products, is it worth keeping it just for that person?

Market Basket - Applications

Other applications include:

- communication (set of phone calls)
- banks (each account is a transaction)
- Medical Treatment (a patient is a transaction with a set of diseases!)
The maths and algorithms are very similar for all.

Market Basket - Definitions

- $I=i_{1}, i_{2}, \ldots, i_{n}$ is a set of all items
- Transaction t_{i} is a set of items such that $t_{i} \subseteq I$ (basket)
- Transaction database D contains all transactions t_{1}, \ldots, t_{d}
- An Association Rule is where $X \Longrightarrow Y$, i.e. X implies Y
- An itemset is a set of items. If it has k items, it is a k - itemset

Market Basket - Definitions

- Support s of an itemset X is the percentage of transactions in D that contain X

Support of association rule $X \Longrightarrow Y$ is the support of the itemset $X \cup Y$

- Confidence of the rule $X \Longrightarrow Y$ is the ratio between the transactions that contain both X and Y and the number of transactions that have X in D

Market Basket - Problem

Problem: Find association rules

Given:

- a set / of items
- database D of transactions
- minimum support s
- minimum confidence c

Find: Association rules $X \Longrightarrow Y$ with a minimum support s and minimum confidence c

Market Basket - Problem

Solution

- Find all itemsets that have minimum support
- Generate rules using frequent itemsets

Market Basket - Association Rule Mining

For example:

Transaction	Items
1	coffee, pen
2	coffee, pastry
3	coffee, paper, pen
4	pastry, crisps

If minimum support is 0.5 then only 2 -itemset coffee, pen has minimum support

Market Basket - Association Rule Mining				
Using this transaction database D Find most frequent itemsets				
		itemsets	frequency	support
		$\{A\}$	4	0.8
Transaction	Itemsets	$\{B\}$	1	0.2
t_{1}	A, B, C	\{C\}	3	0.6
t_{2}	A, C	$\{D\}$	2	0.4
	A, C	\{E\}	2	0.4
t_{3}	A, C, D	$\{A, B\}$	1	0.2
t_{4}	A, E	$\{A, C\}$	3	0.6
t_{5}	D, E	$\{A, D\}$	1	0.2
		$\{A, E\}$	1	0.2
support $=\frac{\text { freq(item) }}{n}$		$\{B, C\}$	1	0.2
		$\{D, E\}$	1	0.2
		$\{A, B, C\}$	1	0.2
Where $n=$ number of		$\{A, C, D\}$	1	0.2

Market Basket - Association Rule Mining

Step 1 : Generate frequent itemsets

frequent itemset	itemset support
coffee	0.75
pen	0.5
pastry	0.5
coffee, pen	0.5

Step 2: Generate Rules
Confidence: ratio of transactions that have both X and Y and the number of transactions that have X in D

$$
\begin{array}{c|c|c}
\text { rule } & \text { support } & \text { confidence } \\
\text { coffee }=>\text { pen } & 0.5 & 2 / 3=0.6 \\
\text { pen }=>\text { coffee } & 0.5 & 2 / 2=1
\end{array}
$$

Market Basket - Association Rule Mining

With minimum support 0.4:

itemsets	frequency	support	itemsets	frequency	support	
$\{A\}$	4	0.8	$\{A\}$	4	0.8	
$\{B\}$	1	0.2	$\{C\}$	3	0.6	
$\{C\}$	3	0.6	$\{D\}$	2	0.4	
$\{D\}$	2	0.4	$\{E\}$	2	0.4	
$\{E\}$	2	0.4	$\{A, C\}$	3	0.6	
$\{A, B\}$	1	0.2				
$\{A, C\}$	3	0.6	So the only rules we can			
$\{A, D\}$	1	0.2	examine are $A \Longrightarrow C$ or			
$\{A, E\}$	1	0.2	$C \Longrightarrow A$			
$\{B, C\}$	1	0.2				
$\{D, E\}$	1	0.2		assn rules	support	
confidence						
$\{A, B, C\}$	1	0.2	$A \Longrightarrow C$	0.6	0.75	
$\{A, C, D\}$	1	0.2	$C \Longrightarrow A$	0.6	1.00	
		$16 / 30$				

Market Basket - A Priori Algorithm

The Apriori Algorithm
We know:

- Any subset of a frequent itemset is also frequent
- Any superset of an infrequent itemset is also infrequent Let:
- $L_{k}=$ set of frequent k - itemsets (have minimum support)
- $C_{k}=$ set of candidate k - itemsets (potentially frequent)

Market Basket - A Priori Algorithm

```
Algorithm 1: A Priori Algorithm
Data: \(D\) transaction database, minSupport
\(L_{1}=\{\) frequent items \(\}\)
\(k=1\);
while \(L_{k}\) not empty do
    \(C_{k+1}=\) all possible candidates from \(L_{k}\);
    for each transaction \(t\) in \(D\) do
        if candidate in \(C k+1\) is in \(t\) then
                increment count for candidate;
            end
    end
    \(L_{k+1}=\) candidates in \(C_{k+1}\) with minSupport;
    \(k=k+1\);
end
```


Algorithm 1: A Priori Algorithm

```
Data: \(D\) transaction database, minSupport
\(=\{\) frequent items \(\}\)
\(k=1\);
wile \(L_{k}\) not empty do
for each transaction \(t\) in \(D\) do
```

```
increment count for candidate;
```


Market Basket - A Priori Algorithm

Simple example:

```
Algorithm 2: A Priori Algorithm - Generating Candidates
Data: \(L_{i-1}\)
\(C_{i}=\{ \} ;\)
for each itemset \(J\) in \(L_{i-1}\) do
    for each itemset \(K\) in \(L_{i-1}\) such that \(K \neq J\) do
        if \(i-2\) elements in \(J\) and \(K\) are equal then
            if all subsets of \(\{K \cup J\}\) are in \(L_{i-1}\) then
                \(C_{i}=C_{i} \cup\{K \cup J\} ;\)
            end
        end
    end
end
return \(C_{i}\);
```


Market Basket - A Priori Algorithm

minSupport $=0.5$		$k=1,$ Go through D :		itemset	support
		itemset	support	$\{\mathrm{A}, \mathrm{B}\}$	0.25
Database D : Transaction	Basket	\{ A \}	0.5	$\{\mathrm{A}, \mathrm{C}\}$	0.5
		\{B\}	0.75	$\{\mathrm{A}, \mathrm{E}\}$	0.25
t_{1}	A, C, D	\{C\}	0.75	$\{\mathrm{B}, \mathrm{C}\}$	0.5
t_{2}	B, C, E	\{D\}	0.25	\{B, E\}	0.75
t_{3}	A, B, C, E	\{D\}	0.25 0.75	\{C, E\}	0.5
	B, E		0.75	So $L 2=$	$\{\mathrm{A}, \mathrm{C}\},\{\mathrm{B}$
				$C\},\{B$,	, $\{C, E\}\}$

Market Basket - A Priori Algorithm

$k=3$
$L 2=\{\{A, C\},\{B, C\},\{B, E\},\{C, E\}\}$
Generating Candidates:
$\{A, C\},\{B, C\}$ are both in L_{2}, giving $\{A, B, C\}$
Not all subsets of $\{A, B, C\}$ are in L_{2}
$\{A, C\},\{C, E\}$ are both in L_{2} giving $\{A, C, E\}$ Not all subsets of $\{A, C, E\}$ are in L_{2}
$\{B, C\},\{B, E\}$ are both in L_{2} giving $\{B, C, E\}$ All subsets of $\{B, C, E\}$ are in L_{2} so:

Go through D :
itemset support
$\{B, C, E\} \quad 0.5$

Market Basket - A Priori Algorithm

Advantages of A Priori Algorithm:

- Uses large itemset property
- Can be Parallelised
- Easy to implement

Disadvantages

- Assumes D transaction database is in memory
- Requires many database scans

Market Basket - Generating Rules

Transaction Basket
t_{1}
A, C, D
t_{2}
B, C, E
$t_{3} \quad \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{E}$
t_{4}
B, E

Consider 3-itemset $\{\mathrm{B}, \mathrm{C}, \mathrm{E}\}$
Use all permutations of rules from these three items

rule	support	confidence
$\{B, C\} \Longrightarrow E$	0.5	$2 / 2=1$
$\{B, E\} \Longrightarrow C$	0.5	$2 / 3=0.66$
$\{C, E\} \Longrightarrow B$	0.5	$2 / 2=1$
$E \Longrightarrow\{B, C\}$	0.5	$2 / 3=0.66$
$C \Longrightarrow\{B, E\}$	0.5	$2 / 3=0.66$
$B \Longrightarrow\{C, E\}$	0.5	$2 / 3=0.66$

Market Basket - Improvements

Confidence of a rule is the ratio between transactions with $X \cup Y$ to the number of transactions with X

$$
\operatorname{conf}(X \Longrightarrow Y)=\frac{\frac{n \operatorname{Trans}(X \cup Y)}{|D|}}{\frac{n \operatorname{Trans}(X)}{|D|}}=\frac{p(X \wedge Y)}{p(X)}=p(Y \mid X)
$$

If Y is independent of $X: p(Y)=p(Y \mid X)$
This means if you have a high probability of $p(Y)$ we have a rule with high confidence that associates independent itemsets e.g. if p ("bread" $)=0.8$, and "bread" is independent from "sausages", then the rule "bread" \Longrightarrow "sausages" will have confidence 0.8

Market Basket - Improvements

Alternative measures

lift measure indicates departure from independence of X and Y the lift of $X \Longrightarrow Y$ is:

$$
\operatorname{lift}(X \Longrightarrow Y)=\frac{\operatorname{conf}(X \Longrightarrow Y)}{p(Y)}=\frac{\frac{p(X \wedge Y)}{p(X)}}{p(Y)}=\frac{p(X \wedge Y)}{p(X) p(Y)}
$$

Unfortunately, lift is symmetric, the same for $X \Longrightarrow Y$ as $Y \Longrightarrow X$

Market Basket - Improvements

Conviction indicates that X and Y are not independent, and takes in to account the direction of implication
The conviction of $X \Longrightarrow Y$ is: ${ }^{1}$

$$
\operatorname{conv}(X \Longrightarrow Y)=\frac{p(X) p(\neg Y)}{p(X \wedge \neg Y)}
$$

Market Basket - Linked Concepts

Detecting Plagarism

"Baskets" = sentences
"items" = documents containing those sentences
Items that appear together could mean that a student has copied work from another document, plagarism!

	doc1	doc2	doc3	doc4
sent1	1	0	1	1
sent2	0	0	1	1
sent3	0	1	1	0

Here.
\therefore doc $4 \Longrightarrow$ doc3
If there is a sentence occurring in document 4, there is a high probability of it occurring in document 3, so if doc3 is your coursework, you may be in trouble!

Market Basket - Linked Concepts

Web pages
"Baskets" = web pages
"items" = linked pages
Pairs of pages with many common references may be about the same topic
"Baskets" $=$ web pages, p_{1}
"items" $=$ pages that link to p_{1}
Pages with many of the same links may be mirrors or about the same topic

Market Basket - Summary

Terms were defined:

- Association rules: if X then $Y, X \Longrightarrow Y$
- Items I, set of all possible items i
- Transaction: set of items t_{i} such that $t_{i} \subset I$
- Database D containing all transactions $\left\{t_{i}\right\}_{1}^{d}$
- Itemset: subset of I, with k items is a k-itemset

Measures were defined:

- Support of itemset X is \% transactions in D that contain X
- Support of Association rule $X \Longrightarrow Y$ is $\frac{|t \in D ; X \cup Y \subset t|}{|t \in D ; X \subset t|}$
- Confidence is $\frac{\operatorname{Sup}(X \cup Y)}{\operatorname{Sup}(X)}$
- Lift is $\frac{\operatorname{Sup}(X \cup Y)}{\operatorname{Sup}(X) \operatorname{Sup}(Y)}$
- Conviction is $\frac{p(X) p(\neg Y)}{p(X \wedge \neg Y)}$

A Priori Algorithm described
\square

