Data Mining Lecture 10: Market Basket Analysis

Jo Grundy

ECS Southampton

14th March 2023

Market Basket - Introduction

Why analyse market baskets? Get insight:

- do products sell quickly or slowly
- which products are sold together?
- which might need a promotion?

Use that to take action:

- store layout
- promotions
- recommendations

Learn Patterns:

- If I buy baking powder, but no flour, what am I baking?
- If I buy a mobile phone and no case, could the shop make more money?

What do we mean? Association Rules: if X then Y $X \Rightarrow Y$ Looking for rules to predict if something X is bought, what else is likely to be bought?

Market Basket - Introduction

Beer and Nappies

Back in 1992 A data consultant was using SQL queries to find things were often bought along side nappies (Diapers in the US), as nappies are high margin, they wanted to sell more of them. They were looking to find things to put on the shelves near each other. She found a correlation between beer sales, and nappy sales, and emailed her colleagues about it.

There was no good statistical basis for this link, but the story has become well known, one of the first to 'go viral'

Market Basket - Introduction

Market Basket analysis:

Given a database of transactions Find groups of items that are frequently bought together

Each transaction is a set of items, a basket, called here an *itemset* This allows companies to understand why people make certain purchases

Market Basket - Applications

Insight can be gained about the products they sell

- Which sell quickly or slowly?
- Which are bought together?
- Identify possible missed opportunities

This helps companies to decide on:

- How to layout a shop?
- Which products to promote?

E. g. if one specific product (e.g. "Earl Grey Redbush Tea") is only rarely bought, but when it is bought that same customer spends lots of money on other products, is it worth keeping it just for that person? Other applications include:

- communication (set of phone calls)
- banks (each account is a transaction)
- Medical Treatment (a patient is a transaction with a set of diseases!)

The maths and algorithms are very similar for all.

Definitions:

▶ $I = i_1, i_2, \ldots, i_n$ is a set of all items

- ▶ $I = i_1, i_2, \ldots, i_n$ is a set of all items
- ▶ Transaction t_i is a set of items such that $t_i \subseteq I$ (basket)

- $I = i_1, i_2, \ldots, i_n$ is a set of all items
- ▶ Transaction t_i is a set of items such that $t_i \subseteq I$ (basket)
- ▶ Transaction database D contains all transactions t_1, \ldots, t_d

- ▶ $I = i_1, i_2, \ldots, i_n$ is a set of all items
- ▶ Transaction t_i is a set of items such that $t_i \subseteq I$ (basket)
- ▶ Transaction database D contains all transactions t_1, \ldots, t_d
- An **Association Rule** is where $X \implies Y$, i.e. X implies Y

- $I = i_1, i_2, \ldots, i_n$ is a set of all items
- ▶ Transaction t_i is a set of items such that $t_i \subseteq I$ (basket)
- ▶ Transaction database D contains all transactions t_1, \ldots, t_d
- An **Association Rule** is where $X \implies Y$, i.e. X implies Y
- An itemset is a set of items. If it has k items, it is a k - itemset

- Support s of an itemset X is the percentage of transactions in D that contain X
- Support of association rule $X \implies Y$ is the support of the itemset $X \cup Y$

- Support s of an itemset X is the percentage of transactions in D that contain X
- Support of association rule $X \implies Y$ is the support of the itemset $X \cup Y$
- Confidence of the rule X => Y is the ratio between the transactions that contain both X and Y and the number of transactions that have X in D

Market Basket - Problem

Problem: Find association rules Given:

- a set I of items
- database D of transactions
- minimum support s
- ▶ minimum confidence *c*

Find: Association rules $X \implies Y$ with a minimum support s and minimum confidence c

Market Basket - Problem

Solution

- Find all itemsets that have minimum support
- Generate rules using frequent itemsets

For example:

Transaction	Items
1	coffee, pen
2	coffee, pastry
3	coffee, paper, pen
4	pastry, crisps

If minimum support is 0.5 then only 2-itemset coffee, pen has minimum support

Step 1 : Generate frequent itemsets

frequent itemset	itemset support
coffee	0.75
pen	0.5
pastry	0.5
coffee, pen	0.5

Step 2: Generate Rules

Confidence: ratio of transactions that have both X and Y and the number of transactions that have X in D

rule	support	confidence
coffee => pen	0.5	2/3 = 0.6
$pen \mathrel{=}> coffee$	0.5	2/2 = 1

Using this transaction database DFind most frequent *itemsets*

Т

itemsets	frequency	support
{ <i>A</i> }	4	0.8

ransaction	Itemsets
t_1	A, B, C
t_2	A, C
t ₃	A, C, D
t ₄	A, E
t_5	D, E

$$support = rac{freq(item)}{n}$$

Where n = number of transactions

Using this transaction database DFind most frequent *itemsets*

Transaction	Itemsets
t_1	A, B, C
t_2	A, C
t ₃	A, C, D
t_4	Α, Ε
t_5	D, E

itemsets	frequency	support
$\{A\}$	4	0.8
$\{B\}$	1	0.2
{ <i>C</i> }	3	0.6
$\{D\}$	2	0.4
{ <i>E</i> }	2	0.4

$$support = \frac{freq(item)}{n}$$

Where n = number of transactions

Using this transa	oction			
database D		•••••••	(
Find most freque	ent <i>itemsets</i>	Itemsets	frequency	support
		$\{A\}$	4	0.8
Transaction	Itemsets	$\{B\}$	1	0.2
t_1	A, B, C	{ <i>C</i> }	3	0.6
to	A. C	$\{D\}$	2	0.4
- <u>-</u>		$\{E\}$	2	0.4
13	A, C, D	$\{A, B\}$	1	0.2
t_4	A, E	$\{A, C\}$	3	0.6
t_5	D, E	$\{A, D\}$	1	0.2
		$\{A, E\}$	1	0.2
f	rad(itam)	$\{B, C\}$	1	0.2
support = -	n	$\{D, E\}$	1	0.2

Where n = number of transactions

Using this transa	iction			
database D				
Find most freque	ent <i>itemsets</i>	itemsets	frequency	support
		$\{A\}$	4	0.8
Transaction	Itemsets	<i>{B}</i>	1	0.2
t_1	A, B, C	{ <i>C</i> }	3	0.6
to	AC	$\{D\}$	2	0.4
t_		$\{E\}$	2	0.4
<i>t</i> 3	А, С, D	$\{A, B\}$	1	0.2
t_4	A, E	$\{A, C\}$	3	0.6
t_5	D, E	$\{A, D\}$	1	0.2
		$\{A, E\}$	1	0.2
f	realitem	$\{B, C\}$	1	0.2
support = $-$		$\{D, E\}$	1	0.2
	11	$\{A, B, C\}$	1	0.2
Where $n = num$	ber of	$\{A, C, D\}$	1	0.2
transactions				

With minimum support 0.4:

itemsets	frequency	support	itomente froquency support
$\{A\}$	4	0.8	(4) A O O
{ <i>B</i> }	1	0.2	$\{A\}$ 4 0.8
{ C }	3	0.6	$\{C\}$ 3 0.6
{D}	2	0.4	$\{D\}$ 2 0.4
{ <i>E</i> }	2	0.4	$\{E\}$ 2 0.4
$\{\Delta R\}$	1	0.1	$\{A, C\}$ 3 0.6
$\{A, C\}$	2	0.2	
$\{A, C\}$	5	0.0	So the only rules we can
$\{A, D\}$	1	0.2	examine are $A \implies C$ or
$\{A, E\}$	1	0.2	$C \implies A$
$\{B, C\}$	1	0.2	
$\{D, E\}$	1	0.2	Charles Charles Charles
$\{A, B, C\}$	1	0.2	assn rules support confidence
$\{A \in D\}$	1	0.2	$A \implies C \qquad 0.6 \qquad 0.75$
(,, c, b)	-	0.2	$C \implies A = 0.6 = 1.00$

The Apriori Algorithm

We know:

- Any subset of a *frequent itemset* is also frequent
- Any superset of an infrequent itemset is also infrequent Let:
 - L_k = set of frequent k *itemsets* (have minimum support)
 - C_k = set of candidate k *itemsets* (potentially frequent)

```
Algorithm 1: A Priori Algorithm
Data: D transaction database, minSupport
L_1 = \{ \text{frequent items} \};
k = 1:
while L_k not empty do
    C_{k+1} = all possible candidates from L_k;
   for each transaction t in D do
       if candidate in Ck + 1 is in t then
          increment count for candidate;
       end
   end
   L_{k+1} = candidates in C_{k+1} with minSupport;
   k = k + 1:
end
```


Simple example:

minSupport = 0.5

Database D:
TransactionBasket t_1 A, C, D t_2 B, C, E t_3 A, B, C, E t_4 B, E

Simple example:

k = 1.minSupport = 0.5Go through *D*: itemset support Database *D*: {A} 0.5 Transaction Basket {B} 0.75 A, C, D t_1 {C} 0.75 B, C, E t_2 {D} 0.25 A, B, C, E t3 {E} 0.75 B, E t4

Simple example:

minSupport = 0.5

Database D: Transaction Basket t_1 A, C, D t_2 B, C, E t_3 A, B, C, E t_4 B, E

k = 1,	
Go throu	ıgh D:
itemset	support
$\{A\}$	0.5
{B}	0.75
$\{C\}$	0.75
- {D}	0.25
- {E}	0.75

So $L_1 = \{A, B, C, E\}$ $\therefore C_2 =$ itemset support {A, B} 0.25 {A, C} 0.5 {A, E} 0.25 {B, C} 0.5 {B, E} 0.75 {C, E} 0.5 So $L2 = \{ \{A, C\}, \{B, A\} \}$ C}, {B, E}, {C, E} }

$$\begin{array}{l} k=3\\ L2= \{ \ \{A,\ C\},\ \{B,\ C\},\ \{B,\ E\},\ \{C,\ E\} \ \}\\ \text{Generating Candidates:}\\ \{A,\ C\},\ \{B,\ C\} \ \text{are both in } L_2,\ \text{giving } \{A,\ B,\ C\}\\ \text{Not all subsets of } \{A,\ B,\ C\} \ \text{are in } L_2\\ \{A,\ C\},\ \{C,\ E\} \ \text{are both in } L_2\ \text{giving } \{A,\ C,\ E\}\\ \text{Not all subsets of } \{A,\ C,\ E\} \ \text{are in } L_2\\ \{B,\ C\},\ \{B,\ E\} \ \text{are both in } L_2\ \text{giving } \{B,\ C,\ E\}\\ \text{All subsets of } \{B,\ C,\ E\}\ \text{are in } L_2\ \text{so:} \end{array}$$

Go through *D*:

itemset support

 $\{B,\,C,\,E\} \qquad 0.5$

Market Basket - Generating Rules

Transaction Basket

t_1	A, C, D	
t_2	B, C, E	
t_3	A, B, C, E	
t_4	B, E	
Consider	3-itemset {B, C, E}	
Use all pe	ermutations of rules fro	m these three items

rule	support	confidence
$\{B,C\} \implies E$	0.5	2/2 = 1
$\{B,E\} \implies C$	0.5	2/3 = 0.66
$\{C, E\} \implies B$	0.5	2/2 = 1
$E \implies \{B, C\}$	0.5	2/3 = 0.66
$C \implies \{B, E\}$	0.5	2/3 = 0.66
$B \implies \{C, E\}$	0.5	2/3 = 0.66

Advantages of A Priori Algorithm:

- Uses large itemset property
- Can be Parallelised
- Easy to implement

Disadvantages

- Assumes D transaction database is in memory
- Requires many database scans

Market Basket - Improvements

Confidence of a rule is the ratio between transactions with $X \cup Y$ to the number of transactions with X

$$conf(X \implies Y) = \frac{\frac{nTrans(X \cup Y)}{|D|}}{\frac{nTrans(X)}{|D|}} = \frac{p(X \land Y)}{p(X)} = p(Y|X)$$

If Y is independent of X: p(Y) = p(Y|X)This means if you have a high probability of p(Y) we have a rule with high confidence that associates independent itemsets e.g. if p("bread") = 0.8, and "bread" is independent from "sausages", then the rule "bread" \implies "sausages" will have confidence 0.8

Market Basket - Improvements

Alternative measures: **lift** measure indicates departure from independence of X and Y the **lift** of $X \implies Y$ is:

$$lift(X \implies Y) = \frac{conf(X \implies Y)}{p(Y)} = \frac{\frac{p(X \land Y)}{p(X)}}{p(Y)} = \frac{p(X \land Y)}{p(X)p(Y)}$$

Unfortunately, lift is symmetric, the same for $X \implies Y$ as $Y \implies X$

Conviction indicates that X and Y are not independent, and takes in to account the direction of implication The conviction of $X \implies Y$ is: ¹

$$conv(X \implies Y) = \frac{p(X)p(\neg Y)}{p(X \land \neg Y)}$$

¹Brin et al SIGMOD 1997

Market Basket - Linked Concepts

"Baskets" = **documents**

"items" = words in those documents

If we can find words that appear together more often than others, these are **linked concepts**

	word1	word2	word3	word4
doc1	1	0	1	1
doc2	0	0	1	1
doc3	0	1	1	0

 \therefore word4 \implies word3

As when *word4* occurs, there is a large probability that *word3* will also occur

Market Basket - Linked Concepts

Detecting Plagarism

"Baskets" = sentences

"items" = **documents** containing those sentences

Items that appear together could mean that a student has copied work from another document, plagarism!

	doc1	doc2	doc3	doc4
sent1	1	0	1	1
sent2	0	0	1	1
sent3	0	1	1	0

Here ..

 $\therefore doc4 \implies doc3$

If there is a sentence occurring in document 4, there is a high probability of it occurring in document 3, so if *doc*3 is your coursework, you may be in trouble!

Market Basket - Linked Concepts

Web pages

"Baskets" = web pages

"items" = linked pages

Pairs of pages with many common references may be about the same topic

"Baskets" = web pages, p_1

"items" = pages that link to p_1

Pages with many of the same links may be mirrors or about the same topic

Market Basket - Summary

Terms were defined:

- Association rules: if X then Y, $X \implies Y$
- Items I, set of all possible items i
- **Transaction**: set of items t_i such that $t_i \subset I$
- **Database** D containing all transactions $\{t_i\}_1^d$
- **Itemset**: subset of *I*, with *k* items is a k itemset

Measures were defined:

- **Support** of itemset X is % transactions in D that contain X
- Support of Association rule $X \implies Y$ is $\frac{|t \in D; X \cup Y \subset t|}{|t \in D; X \subset t|}$

Confidence is Sup(X∪Y)/Sup(X)
 Lift is Sup(X)Sup(Y)
 Conviction is P(X)p(¬Y)/p(X∧¬Y)
 A Priori Algorithm described