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Nearest Neighbours - Introduction

How would you classify this point?
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Nearest Neighbours - Introduction

Use the closest samples..

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace
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Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

> K = 17 blue star
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Nearest Neighbours - Introduction
We can get a decision boundary given k:

for example:

classification when k = 1
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classification when k = 5
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classification when k = 3
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Nearest Neighbours - Introduction
The boundary gets smoother, and generalises better when k is high
for example:

classification when k = 11 classification when k = 19

BRR R B B8 B B
82N R BB 8 8 ¥

And with multi class classification, equally sized classes:

classification when k = 1 classification when k = 29
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Nearest Neighbours - Introduction

However, if k is too high, where some classes are less common,
they can be missed

classification when k = 1 classification when k = 19

classification when k = 29

MNIST ipynb demo

7/32



Nearest Neighbours - Introduction

Advantages?
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Nearest Neighbours - Introduction

Advantages?
» No assumptions made
» No training phase
» Simple and easy to implement

Problems?
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Nearest Neighbours - Introduction

Advantages?
» No assumptions made
» No training phase
» Simple and easy to implement

Problems?

» Doesn't scale well with lots of data

» Doesn't scale well with many dimensions
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Nearest Neighbours - Regression
KNN can be used to perform regression

It uses the average value of the k closest data points

[
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Nearest Neighbours - Regression
KNN can be used to perform regression

It uses the average value of the k closest data points

[

So a point at x = 1.4 will have a value = 2 if k =1-2
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Nearest Neighbours - Regression

Regression with k=1 Regression with k=7 Regression with k=19

From overfitting to underfitting..
The mean squared errors can be measured for each value of k

ol
1

Greatest errors at the edges, interpolation easier than extrapolation
Tuning k carefully is important - best done using cross validation
ipynb Height Weight Age regression demo
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Nearest Neighbours - Weighted KNN

Up to now, each value in the k nearest neighbours has been
treated equally.

Better: if closer neighbours are more important

We can use a range of weighting schemes to do this:
» Inverse Weighting
» Subtraction weighting
» Gaussian Weighting
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Nearest Neighbours - Weighted KNN

Inverse Weighting:
1

w =
dist + ¢
Where c is a constant, avoiding division by zero error if dist =0
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Nearest Neighbours - Weighted KNN

Subtraction Weighting:
w = max(0, ¢ — dist)

Where c is a constant
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Nearest Neighbours - Weighted KNN

Gaussian Weighting:
—dist?
c2

w = exp

Where c is a constant
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Nearest Neighbours - KNN
Weighted Regression:

Regression with k=1
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Gaussian performs best here, especially with higher values of k

Error vs k

—— No Weighting
EL] Inverse Weighting
—— Subtraction Weighting
—— (Gaussian Weighting

mean squared error

Still has greater errors at the edges of the data, interpolation easier
than extrapolation 15/32



Nearest Neighbours - KNN

Again, to chose the best weighting scheme, measure performance
using cross validation.
Problems?

>

v

Heterogenous Data - features with larger ranges have greater
effects

Outliers affect data a good deal, especially for low k
For larger k, less common classes can get ignored

Distance metric determines similarity - usually Euclidean,
works badly in high D

Can use Hamming distance for categorical attributes

Irrelevant data can force otherwise similar data samples to be
far apart

Computationally expensive if there are lots of data, or highly
dimensional data
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Nearest Neighbours - KNN

Curse of dimensionality:
For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x >0.99, and x < 0.1)
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Nearest Neighbours - KNN

Curse of dimensionality:

For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x >0.99, and x < 0.1)

For a square, the outer 1% is 1 — 0.98%2 = 0.0396 ~ 4%

For a cube, the outer 1% is 1 — 0.98% = 0.0588 ~ 6%

auter 1% of unit hypercube

Proportion in

0 = 50 EE) 100 125 150 175 200
No. of Dimensions

This means in higher dimensions, data is nearly always extrapolated
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Nearest Neighbours - KNN

Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.

e.g. for k = 10, number of points N =1, OOO OOO

In a unit line, the average neighbourhood is 106 = 0.00001 long
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Nearest Neighbours - KNN

Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.

e.g. for k = 10, number of points N =1, OOO OOO

In a unit line, the average nelghbourhood is 106 = 0.00001 long

In a unit square, the average side length is 1/1—06 = 0.003 long

In a unit cube, the average side length is ¢/ 106 = 0.02 long

=
=

Avg. length of side of neighbourhood hypercube

0 = 50 EE) 100 125 150 175 200
HNo. of Dimensions

This can make it very difficult to work out which are closer, as the

distances are nearly all the same 1832



Nearest Neighbours - KNN

Solutions: For heterogenous data?
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Nearest Neighbours - KNN

Solutions: For heterogenous data?

» For heterogenous data, can normalise

19/32



Nearest Neighbours - KNN

Solutions: For heterogenous data?
» For heterogenous data, can normalise

P> Better to scale factors for each feature to optimise
performance

» Could use this to do feature selection
eg. if works best when scale factor = 0, then feature is
useless!
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Nearest Neighbours - KNN
Solutions for high D?
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Nearest Neighbours - KNN
Solutions for high D?
» Dimensionality reduction.. Care! Some aren't suitable (e.g.
MDS, SOM)
> Also.. PCA:

» A random direction could be better!
Johnson Lindenstrauss lemma:
if points in a vector space are of high enough dimensionality,
they may be projected into a lower dimensional space in a way
which approximately preserves the distances between the

points, this basis can be generated randomly
20/32



Nearest Neighbours - KNN

More solutions for high D?
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Nearest Neighbours - KNN

More solutions for high D?
» Use different metric:
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Nearest Neighbours - KNN

More solutions for high D?
» Use different metric:
» Hamming distance for categorical attributes
» BM25 or TF-IDF for text data
> Minkowski distance (p-norm) - generalisation of Euclidean
distance
» Kaullback - Liebler Divergence for histograms
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Nearest Neighbours - KNN

Solutions for lots of data?

» Need to quickly find the nearest neighbour to a particular
point in a highly dimensional space
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Nearest Neighbours - KNN

Solutions for lots of data?

» Need to quickly find the nearest neighbour to a particular
point in a highly dimensional space
» Could index points in a tree structure?
» Could hash the points?
» Could break up the space
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Nearest Neighbours - K-D trees

K-D trees are binary tree structures that partition the space along
an axis-aligned hyperplane

» Chose random dimension

» Divide along median value

» Repeat until depth limit reached or certain number of items in
each leaf
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Nearest Neighbours - K-D trees

For a simple dataset:

Tree:

4z
I
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Nearest Neighbours - K-D trees

Split:
Tree:

False True

4z
I
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Nearest Neighbours - K-D trees

Tree:

d2
H oMW R Ut e w @ W

Split:

X1l
. w12
. w2
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Nearest Neighbours - K-D trees

Tree:

False

False

True

False

True

True

Split:

dz
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. %11,
- x12
. x21
. %22
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Nearest Neighbours - K-D trees
To Classify: (6, 3)

» Go to correct part of tree and
search subspace

> If the border is closer than
k-neighbours in the subspace:

Split:

» Go back up tree and search

False True

H oMW B o oo w @ o

False True False True
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Nearest Neighbours - K-D trees

Problems?

» Doesn't scale well to high dimensions

» Often need to search much of the tree

> Need many more examples than there are dimensions, at least
2”

» There are approximate versions, not guaranteed exact answer

but do scale
» Based on ensembles of trees with a randomised split dimension
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Nearest Neighbours - LSH

Locality Sensitive Hashing
Makes hash codes that are similar for similar vectors

» Similar items map to the same buckets with high probability
» number of buckets much smaller than number of data samples

» Aims to maximise the probability of a collision for similar items

30/32



Nearest Neighbours - LSH

Accomplished by:

» Chose random hyperplanes (hy, hy, ..., hg)

» Each hyperplane with split the space in to 2 regions
> . the space will be sliced in to 2 regions (buckets)
>

Giving a simple code for each of the data points, depending
on which side of each hyperplane the data points are

» The same code for each of the data points within the same
region

» Compare new point only to training points in the same region

» Repeat with different random hyperplanes (hy, ho, ..., hg)

on board

Gives low complexity , ~ O(d log n), as compare new data to only
n
2k
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Nearest Neighbours - Summary

KNN can be used for regression as well as classification

» Using weighting can improve performance
» Poor performance with large data sets

» Can use K-D trees to help overcome these issues

> Still can have issues with highly dimensional data
» Often not much improvement in performance

» Curse of dimensionality

» Affects neighbourhood size
» Affects amount of extrapolation

» Can use dimensionality reduction to help (but be careful!)

» Fast approximate Nearest Neighbourhood methods - LSH

Also: Final presentation does not need to be for full coursework, it
is to show what you have done so far
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