
Data Mining
Lecture 9: Nearest Neighbours

Jo Grundy

ECS Southampton

13th March 2023

1 / 32



Nearest Neighbours - Introduction

How would you classify this point?

2 / 32



Nearest Neighbours - Introduction

Use the closest samples..

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

3 / 32



Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

I K = 1?

blue star

I K = 3? blue star

I K = 5? red dot

I K > 5? red dot

4 / 32



Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

I K = 1? blue star

I K = 3?

blue star

I K = 5? red dot

I K > 5? red dot

4 / 32



Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

I K = 1? blue star

I K = 3? blue star

I K = 5?

red dot

I K > 5? red dot

4 / 32



Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

I K = 1? blue star

I K = 3? blue star

I K = 5? red dot

I K > 5?

red dot

4 / 32



Nearest Neighbours

K-Nearest Neighbours: Assigns class based on majority class of
closest K neighbours in featurespace

I K = 1? blue star

I K = 3? blue star

I K = 5? red dot

I K > 5? red dot

4 / 32



Nearest Neighbours - Introduction
We can get a decision boundary given k:
for example:

5 / 32



Nearest Neighbours - Introduction
The boundary gets smoother, and generalises better when k is high
for example:

And with multi class classification, equally sized classes:

6 / 32



Nearest Neighbours - Introduction
However, if k is too high, where some classes are less common,
they can be missed

MNIST ipynb demo
7 / 32



Nearest Neighbours - Introduction

Advantages?

I No assumptions made

I No training phase

I Simple and easy to implement

Problems?

I Doesn’t scale well with lots of data

I Doesn’t scale well with many dimensions

8 / 32



Nearest Neighbours - Introduction

Advantages?

I No assumptions made

I No training phase

I Simple and easy to implement

Problems?

I Doesn’t scale well with lots of data

I Doesn’t scale well with many dimensions

8 / 32



Nearest Neighbours - Introduction

Advantages?

I No assumptions made

I No training phase

I Simple and easy to implement

Problems?

I Doesn’t scale well with lots of data

I Doesn’t scale well with many dimensions

8 / 32



Nearest Neighbours - Regression
KNN can be used to perform regression

It uses the average value of the k closest data points

So a point at x = 1.4 will have a value ≈ 2 if k = 1 − 2

9 / 32



Nearest Neighbours - Regression
KNN can be used to perform regression

It uses the average value of the k closest data points

So a point at x = 1.4 will have a value ≈ 2 if k = 1 − 2

9 / 32



Nearest Neighbours - Regression

From overfitting to underfitting..
The mean squared errors can be measured for each value of k

Greatest errors at the edges, interpolation easier than extrapolation
Tuning k carefully is important - best done using cross validation
ipynb Height Weight Age regression demo

10 / 32



Nearest Neighbours - Weighted KNN

Up to now, each value in the k nearest neighbours has been
treated equally.

Better: if closer neighbours are more important

We can use a range of weighting schemes to do this:

I Inverse Weighting

I Subtraction weighting

I Gaussian Weighting

11 / 32



Nearest Neighbours - Weighted KNN

Inverse Weighting:

w =
1

dist + c

Where c is a constant, avoiding division by zero error if dist = 0

12 / 32



Nearest Neighbours - Weighted KNN

Subtraction Weighting:

w = max(0, c − dist)

Where c is a constant

13 / 32



Nearest Neighbours - Weighted KNN

Gaussian Weighting:

w = exp
−dist2

c2

Where c is a constant

14 / 32



Nearest Neighbours - KNN
Weighted Regression:

Gaussian performs best here, especially with higher values of k

Still has greater errors at the edges of the data, interpolation easier
than extrapolation 15 / 32



Nearest Neighbours - KNN

Again, to chose the best weighting scheme, measure performance
using cross validation.
Problems?

I Heterogenous Data - features with larger ranges have greater
effects

I Outliers affect data a good deal, especially for low k

I For larger k , less common classes can get ignored

I Distance metric determines similarity - usually Euclidean,
works badly in high D

I Can use Hamming distance for categorical attributes

I Irrelevant data can force otherwise similar data samples to be
far apart

I Computationally expensive if there are lots of data, or highly
dimensional data

16 / 32



Nearest Neighbours - KNN

Curse of dimensionality:
For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x > 0.99, and x < 0.1)

For a square, the outer 1% is 1 − 0.982 = 0.0396 ≈ 4%
For a cube, the outer 1% is 1 − 0.983 = 0.0588 ≈ 6%

This means in higher dimensions, data is nearly always extrapolated

17 / 32



Nearest Neighbours - KNN

Curse of dimensionality:
For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x > 0.99, and x < 0.1)
For a square, the outer 1% is 1 − 0.982 = 0.0396 ≈ 4%

For a cube, the outer 1% is 1 − 0.983 = 0.0588 ≈ 6%

This means in higher dimensions, data is nearly always extrapolated

17 / 32



Nearest Neighbours - KNN

Curse of dimensionality:
For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x > 0.99, and x < 0.1)
For a square, the outer 1% is 1 − 0.982 = 0.0396 ≈ 4%
For a cube, the outer 1% is 1 − 0.983 = 0.0588 ≈ 6%

This means in higher dimensions, data is nearly always extrapolated

17 / 32



Nearest Neighbours - KNN

Curse of dimensionality:
For low dimensions, the number of points on the edge is very low
E.g. for a line, the outer 1% of a line is 2% of the line (values at
x > 0.99, and x < 0.1)
For a square, the outer 1% is 1 − 0.982 = 0.0396 ≈ 4%
For a cube, the outer 1% is 1 − 0.983 = 0.0588 ≈ 6%

This means in higher dimensions, data is nearly always extrapolated

17 / 32



Nearest Neighbours - KNN
Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.
e.g. for k = 10, number of points N = 1, 000, 000
In a unit line, the average neighbourhood is 10

106
= 0.00001 long

In a unit square, the average side length is
√

10
106

= 0.003 long

In a unit cube, the average side length is 3

√
10
106

= 0.02 long

This can make it very difficult to work out which are closer, as the
distances are nearly all the same

18 / 32



Nearest Neighbours - KNN
Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.
e.g. for k = 10, number of points N = 1, 000, 000
In a unit line, the average neighbourhood is 10

106
= 0.00001 long

In a unit square, the average side length is
√

10
106

= 0.003 long

In a unit cube, the average side length is 3

√
10
106

= 0.02 long

This can make it very difficult to work out which are closer, as the
distances are nearly all the same

18 / 32



Nearest Neighbours - KNN
Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.
e.g. for k = 10, number of points N = 1, 000, 000
In a unit line, the average neighbourhood is 10

106
= 0.00001 long

In a unit square, the average side length is
√

10
106

= 0.003 long

In a unit cube, the average side length is 3

√
10
106

= 0.02 long

This can make it very difficult to work out which are closer, as the
distances are nearly all the same

18 / 32



Nearest Neighbours - KNN
Curse of dimensionality; For low dimensions, the size of a
neighbourhood is small.
e.g. for k = 10, number of points N = 1, 000, 000
In a unit line, the average neighbourhood is 10

106
= 0.00001 long

In a unit square, the average side length is
√

10
106

= 0.003 long

In a unit cube, the average side length is 3

√
10
106

= 0.02 long

This can make it very difficult to work out which are closer, as the
distances are nearly all the same

18 / 32



Nearest Neighbours - KNN

Solutions: For heterogenous data?

I For heterogenous data, can normalise

I Better to scale factors for each feature to optimise
performance

I Could use this to do feature selection
eg. if works best when scale factor = 0, then feature is
useless!

19 / 32



Nearest Neighbours - KNN

Solutions: For heterogenous data?

I For heterogenous data, can normalise

I Better to scale factors for each feature to optimise
performance

I Could use this to do feature selection
eg. if works best when scale factor = 0, then feature is
useless!

19 / 32



Nearest Neighbours - KNN

Solutions: For heterogenous data?

I For heterogenous data, can normalise

I Better to scale factors for each feature to optimise
performance

I Could use this to do feature selection
eg. if works best when scale factor = 0, then feature is
useless!

19 / 32



Nearest Neighbours - KNN
Solutions for high D?

I Dimensionality reduction.. Care! Some aren’t suitable (e.g.
MDS, SOM)

I Also.. PCA:

I A random direction could be better!
Johnson Lindenstrauss lemma:
if points in a vector space are of high enough dimensionality,
they may be projected into a lower dimensional space in a way
which approximately preserves the distances between the
points, this basis can be generated randomly

20 / 32



Nearest Neighbours - KNN
Solutions for high D?
I Dimensionality reduction.. Care! Some aren’t suitable (e.g.

MDS, SOM)
I Also.. PCA:

I A random direction could be better!
Johnson Lindenstrauss lemma:
if points in a vector space are of high enough dimensionality,
they may be projected into a lower dimensional space in a way
which approximately preserves the distances between the
points, this basis can be generated randomly

20 / 32



Nearest Neighbours - KNN

More solutions for high D?

I Use different metric:
I Hamming distance for categorical attributes
I BM25 or TF-IDF for text data
I Minkowski distance (p-norm) - generalisation of Euclidean

distance
I Kullback - Liebler Divergence for histograms

21 / 32



Nearest Neighbours - KNN

More solutions for high D?
I Use different metric:

I Hamming distance for categorical attributes
I BM25 or TF-IDF for text data
I Minkowski distance (p-norm) - generalisation of Euclidean

distance
I Kullback - Liebler Divergence for histograms

21 / 32



Nearest Neighbours - KNN

More solutions for high D?
I Use different metric:

I Hamming distance for categorical attributes
I BM25 or TF-IDF for text data
I Minkowski distance (p-norm) - generalisation of Euclidean

distance
I Kullback - Liebler Divergence for histograms

21 / 32



Nearest Neighbours - KNN

Solutions for lots of data?

I Need to quickly find the nearest neighbour to a particular
point in a highly dimensional space

I Could index points in a tree structure?
I Could hash the points?
I Could break up the space

22 / 32



Nearest Neighbours - KNN

Solutions for lots of data?

I Need to quickly find the nearest neighbour to a particular
point in a highly dimensional space
I Could index points in a tree structure?
I Could hash the points?
I Could break up the space

22 / 32



Nearest Neighbours - K-D trees

K-D trees are binary tree structures that partition the space along
an axis-aligned hyperplane

I Chose random dimension

I Divide along median value

I Repeat until depth limit reached or certain number of items in
each leaf

23 / 32



Nearest Neighbours - K-D trees

For a simple dataset:

Tree:

Data

24 / 32



Nearest Neighbours - K-D trees

Tree:

d1 >= 6

x1 x2

False True

Split:

25 / 32



Nearest Neighbours - K-D trees

Tree:

d1 >= 6

d2 >= 4

x11 x12

x2

False

False True

True

Split:

26 / 32



Nearest Neighbours - K-D trees

Tree:

d1 >= 6

d2 >= 4

x11 x12

d2 >= 8

x21 x22

False

False True

True

False True

Split:

27 / 32



Nearest Neighbours - K-D trees

To Classify: (6, 3)

I Go to correct part of tree and
search subspace

I If the border is closer than
k-neighbours in the subspace:
I Go back up tree and search

d1 >= 6

d2 >= 4

x11 x12

d2 >= 8

x21 x22

False

False True

True

False True

Split:

28 / 32



Nearest Neighbours - K-D trees

Problems?

I Doesn’t scale well to high dimensions

I Often need to search much of the tree

I Need many more examples than there are dimensions, at least
2n

I There are approximate versions, not guaranteed exact answer
but do scale
I Based on ensembles of trees with a randomised split dimension

29 / 32



Nearest Neighbours - LSH

Locality Sensitive Hashing
Makes hash codes that are similar for similar vectors

I Similar items map to the same buckets with high probability

I number of buckets much smaller than number of data samples

I Aims to maximise the probability of a collision for similar items

30 / 32



Nearest Neighbours - LSH

Accomplished by:

I Chose random hyperplanes (h1, h2, . . . , hk)

I Each hyperplane with split the space in to 2 regions

I ∴ the space will be sliced in to 2k regions (buckets)

I Giving a simple code for each of the data points, depending
on which side of each hyperplane the data points are

I The same code for each of the data points within the same
region

I Compare new point only to training points in the same region

I Repeat with different random hyperplanes (h1, h2, . . . , hk)

on board
Gives low complexity , ≈ O(d log n), as compare new data to only
n
2k

31 / 32



Nearest Neighbours - Summary

KNN can be used for regression as well as classification

I Using weighting can improve performance

I Poor performance with large data sets
I Can use K-D trees to help overcome these issues

I Still can have issues with highly dimensional data
I Often not much improvement in performance

I Curse of dimensionality
I Affects neighbourhood size
I Affects amount of extrapolation

I Can use dimensionality reduction to help (but be careful!)

I Fast approximate Nearest Neighbourhood methods - LSH

Also: Final presentation does not need to be for full coursework, it
is to show what you have done so far

32 / 32


