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Decision Trees - Introduction
A decision tree is like a flow chart.
For example, the iris dataset:

has four features, only three are used here, and one is only used
once. 2 / 34

Decision Trees - Introduction

2D iris dataset:
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Decision Trees - Introduction

Decision Trees can be ’hand crafted’ by experts
They can also be built up using machine learning techniques

They are interpretable, it is easy to see how they made a certain
decision

They are used in a wide range of contexts, for example:

I Medicine

I Financial Analysis

I Astronomy

Especially in medicine, the explicit reasoning in decision trees
means experts can understand why the algorithm has made its
decision.
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Decision Trees - Introduction

Each node is a test, each branch is an outcome of the test
Can be used for tabulated data with a range of data types, e.g.
numerical, categorical
ipynb demo
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Decision Trees - Tree Growing Algorithms

There are a good number of algorithms to build decision trees

I CART - Classification And Regression Trees

I ID3 - Iterative Dichotomiser 3

I C4.5 - improved ID3

I C5.0 - improved C4.5

I CHAID - Chi - squared Automatic Interaction Detector
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Decision Trees - CART

The CART algorithm was published by Breiman et al in 1984

I Find best split for each feature - minimises impurity measure

I Find feature that minimises impurity the most

I Use the best split on that feature to split the node

I Do the same for each of the leaf nodes

The CART algorithm depends on an impurity measure. It uses Gini
impurity

Gini impurity measures how often a randomly chosen element from
a set would be incorrectly labelled if it was randomly labelled
according to the distribution of labels in the set. The probabilities
for each label are summed up.
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Decision Trees - CART
Gini Impurity (IG ) sums up probability of a mistake for each label:

mistake probability =
∑
k 6=i

pk = 1− pi

For J classes:

Gini(p) =
J∑

i=1

pi
∑
k 6=i

pk =
J∑

i=1

pi (1− pi )

It reaches its minimum when all cases in the node fall into a single
category
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Decision Trees - CART

Maximum improvement in impurity found using the equation:

Gini(root)−
(
Gini(Left)

nL
n

+ Gini(Right)
nR
n

)
Where Gini(root) is the impurity of the node to be split,
Gini(Left) and Gini(Right) is the impurity of the left and right
branches, nL and nR are the numbers in left and right branches.
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Decision Trees - CART

Example:

Car Make Type Colour Price Mileage Bought?

VW Polo Grey £2000 82000 Yes

Ford Fiesta Purple £1795 95000 Yes

Ford Fiesta Grey £1990 90000 No

VW Golf Red £1800 120000 Yes

VW Polo Grey £900 150000 No

Ford Ka Yellow £1400 100000 Yes

Can go through and calculate best split for each feature.
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Decision Trees - CART

Calculate root node impurity:

Gini(root) =
1

3
(1− 1

3
) +

2

3
(1− 2

3
) =

2

9
+

2

9
=

4

9

Impurity decrease (or Information gain if using Entropy) is thus:

IG = Gini(root)−
(
Gini(Left)

nL
n

+ Gini(Right)
nR
n

)
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Decision Trees - CART

Car Make VW Ford 4/9 - (2/9 + 2/9)

Y, Y, N Y, Y, N = 0

Type Golf Not Golf 4/9 - (0 + 0.4)

Y Y, Y, Y, N, N = 0.044

Colour Grey Not Grey 4/9 - (2/9 + 0)

Y, N, N Y, Y, Y = 0.222

Price > 1000 < 1000 4/9 - (0.267+ 0)

Y, N, Y, Y, Y N = 0.178

This gives the first split. The same process is repeated for each
impure node until all nodes are pure.
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Decision Trees - CART

The second split has the following items:

Car Make Type Colour Price Mileage Bought?

VW Polo Grey £2000 82000 Yes

Ford Fiesta Grey £1990 90000 No

VW Polo Grey £900 150000 No
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Decision Trees - CART

The second Split:

Car Make VW Ford 4/9 - (1/3 + 0)

Y, N N = 0.111

Type Polo Not Polo 4/9 - (1/3 + 0)

Y, N N = 0.111

Mileage above 85,000 below 85,000 4/9 - (0 + 0)

N, N Y = 0.444

Price > 1000 < 1000 4/9 - (0+ 0)

N,N Y = 0.444

The best splits both remove all impurity so we are done:
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Decision Trees - CART

ipynb demo
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Decision Trees - CART

With three classes:
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Decision Trees - CART
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Decision Trees - CART
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Decision Trees - CART

Overfitting..
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Decision Trees - ID3

Similar to CART, Iterative Dichotomy 3 (ID3) minimises entropy
instead of Gini impurity
Entropy:

H(S) =
∑
x∈X
−p(x) log2 p(x)

Where S is the data set, X is the set of classes in S , p(x) is the
proportion of the number of elements in class x to the number of
elements in set S
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Decision Trees - ID3

Information Gain is measured for a split along each possible
attribute A

IG (S ,A) = H(S)−
∑
x∈X

|SA|
|S |

H(SA)

ID3 is very similar to CART, though doesn’t technically support
numerical values
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Decision Trees - Pruning
Overfitting is a serious problem with Decision Trees

.. are four splits really required here?

The trees it creates are too complex.

One solution is pruning

This can be done in a variety of ways, including:
I Reduced Error Pruning
I Entropy Based Merging
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Decision Trees - Reduced Error Pruning

Growing a decision tree fully, then removing branches without
reducing predictive accuracy, measured using a validation set.

I Start at leaf nodes

I Look up branches at last decision split

I replace with a leaf node predicting the majority class

I If validation set classification accuracy is not affected, then
keep the change

This is a simple and fast algorithm that can simplify over complex
decision trees
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Decision Trees - Entropy Based Pruning

Grow a decision tree fully, then

I Chose a pair of leaf nodes with the same parent

I What is the entropy gain from merging them?

I If lower than a threshold, merge nodes

This doesn’t require additional data
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Decision Trees - Missing Data

ID3 ignores missing data, CART generally puts them to the node
that has the largest number of the same category

I You can assign a branch specifically to an unknown value

I You can assign it to the branch with the most of the same
target value

I You can weight each branch using the known factors and put
it in the most similar branch
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Decision Trees - Regression

CART - Classification and Regression Trees How do we use
decision trees for regression? i.e. to give numerical values rather
than a classification.

Could use classification, but using each numerical value as a class..

Problems?

I How would you generalise?

I Loses all meaning of ordering, or similarity

Solution?

Use Variance instead of Gini or Entropy
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Decision Trees - Regression

Maximise Variance Gain:

I Split on the feature values that give maximum gain in variance

I Should make similar numbers group together

I I. e. lower numbers on one side, higher on the other
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Decision Trees - In General

There are problems with Decision Trees:

I Finding an optimal Tree is NP-complete

I They overfit, so don’t generalise well - Hence need to prune

I Information Gain is biased to features with more categories

I Splits are axis aligned..
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Decision Trees - Ensemble Methods

Bagging: Bootstrap aggregating
Uniformly sample initial dataset with replacement in to m subsets
For example:
if data set has 5 samples, (s1, s2, s3, s4, s5)
make a whole bunch of similar data sets:

I (s5, s2, s2, s1, s5)

I (s4, s2, s1, s3, s3)

I (s2, s5, s3, s1, s1)

I (s3, s1, s2, s4, s4)

Train a different decision tree on each set
To classify, apply each classifier and chose the correct one by
majority vote
If doing regression, take the mean of the values
This improves generalisation, as decreases variance without
increasing bias
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Decision Trees - Ensemble Methods

Boosting - Kearns and Valiant (1988):
“Can a set of weak learners create a single strong learner?”

We make a weighted sum of very weak learners
- so long as they all learn different things then it works!
AdaBoost:

I Train a weak learner on one feature

I See what it does well on

I Weight the remaining data more

I repeat

This makes a series of weak learners that have learned how to use
different features to discriminate between classes.
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Decision Trees - Ensemble Methods

AdaBoost:

From Schapire and Freund, 2012)
Shortcomings are identified by high weight data points
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Decision Trees - Ensemble Methods

Gradient boosting with trees - Friedman (1999):
Generalise Adaboost to Gradient boosting to handle any loss
function
Shortcomings are where the residuals are larger
So fit a tree to the residuals:

I x1, yq − f (x1)

I x2, yq − f (x1)

I x3, yq − f (x1)

I
...

I xn, yq − f (xn)

more detail available at
http://www.chengli.io/tutorials/gradient_boosting.pdf
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http://www.chengli.io/tutorials/gradient_boosting.pdf


Decision Trees - Ensemble Methods

Random Forests

Apply bagging
but when learning the tree for each subset, chose the split by
searching over a random sample of the features

Reduces overfitting
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Decision Trees - Summary

Advantages:

I Interpretability

I Ability to work with numerical and categorical features

I Good with mixed tabular data

Disadvantages:

I Might not scale effectively for lots of classes

I Features that interact are problematic
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