

Decision Trees - Introduction

Decision Trees can be 'hand crafted' by experts They can also be built up using machine learning techniques

They are $\ensuremath{\text{interpretable}}$, it is easy to see how they made a certain decision

They are used in a wide range of contexts, for example:

- Medicine
- Financial Analysis
- Astronomy

Especially in medicine, the explicit reasoning in decision trees means experts can understand why the algorithm has made its decision.

Decision Trees - Introduction

Each node is a test, each branch is an outcome of the test Can be used for tabulated data with a range of data types, e.g. numerical, categorical ipynb demo

5 / 34

Decision Trees - Tree Growing Algorithms

There are a good number of algorithms to build decision trees

- CART Classification And Regression Trees
- ► ID3 Iterative Dichotomiser 3
- C4.5 improved ID3
- C5.0 improved C4.5
- ► CHAID Chi squared Automatic Interaction Detector

6 / 34

Decision Trees - CART

The CART algorithm was published by Breiman et al in 1984

- Find best split for each feature minimises impurity measure
- Find feature that minimises impurity the most
- Use the best split on that feature to split the node
- Do the same for each of the leaf nodes

The CART algorithm depends on an impurity measure. It uses Gini impurity

Gini impurity measures how often a randomly chosen element from a set would be incorrectly labelled if it was randomly labelled according to the distribution of labels in the set. The probabilities for each label are summed up.

Decision Trees - CART

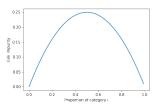
Gini Impurity (I_G) sums up probability of a mistake for each label:

mistake probability
$$=\sum_{k \neq i} p_k = 1 - p_k$$

For J classes:

$$Gini(p) = \sum_{i=1}^{J} p_i \sum_{k \neq i} p_k = \sum_{i=1}^{J} p_i (1 - p_i)$$

It reaches its minimum when all cases in the node fall into a single category



Decision Trees - CART

Maximum improvement in impurity found using the equation:

$$Gini(root) - (Gini(Left)\frac{n_L}{n} + Gini(Right)\frac{n_R}{n})$$

Where Gini(root) is the impurity of the node to be split, Gini(Left) and Gini(Right) is the impurity of the left and right branches, n_L and n_R are the numbers in left and right branches.

9 / 34

Decision Trees - CART

Calculate root node impurity:

$$\textit{Gini(root)} = \frac{1}{3}(1 - \frac{1}{3}) + \frac{2}{3}(1 - \frac{2}{3}) = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$$

Impurity decrease (or Information gain if using Entropy) is thus:

$$I_G = Gini(root) - (Gini(Left)\frac{n_L}{n} + Gini(Right)\frac{n_R}{n})$$

Decision Trees - CART

Example:

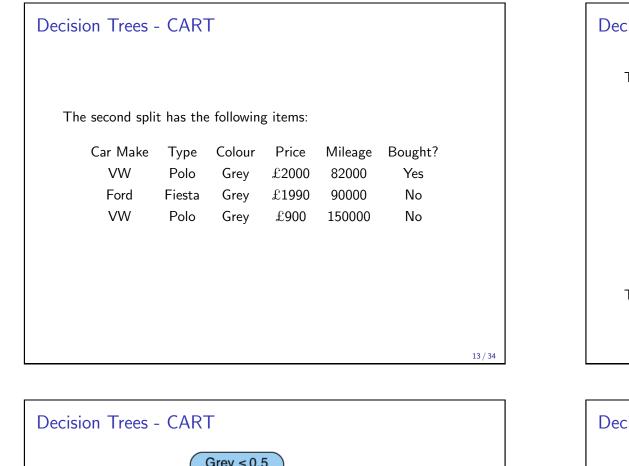
Type	Colour	Price	Mileage	Bought?
Polo	Grey	£2000	82000	Yes
Fiesta	Purple	£1795	95000	Yes
Fiesta	Grey	£1990	90000	No
Golf	Red	£1800	120000	Yes
Polo	Grey	£900	150000	No
Ka	Yellow	£1400	100000	Yes
	Polo Fiesta Fiesta Golf Polo	PoloGreyFiestaPurpleFiestaGreyGolfRedPoloGrey	PoloGrey£2000FiestaPurple£1795FiestaGrey£1990GolfRed£1800PoloGrey£900	Polo Grey £2000 82000 Fiesta Purple £1795 95000 Fiesta Grey £1990 90000 Golf Red £1800 120000 Polo Grey £900 150000

Can go through and calculate best split for each feature.

10 / 34

Decision Trees - CART						
Car Make	VW Y, Y, N	Ford Y, Y, N	4/9 - (2/9 + 2/9) = 0			
Туре	Golf	Not Golf Y. Y. Y. N. N	4/9 - (0 + 0.4) = 0.044			
Colour	Grey Y, N, N	Not Grey Y, Y, Y	4/9 - (2/9 + 0) = 0.222			
Price	> 1000 Y, N, Y, Y, Y	< 1000 N	$\frac{4/9 - (0.267 + 0)}{= 0.178}$			

This gives the first split. The same process is repeated for each impure node until all nodes are pure.



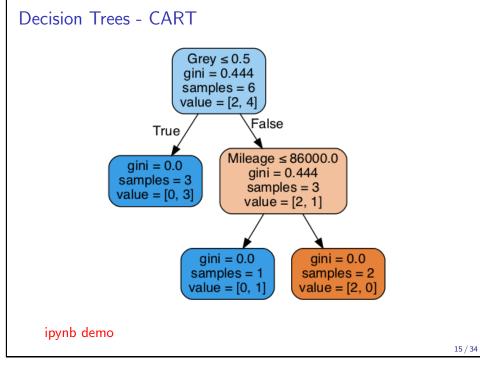
Decision Trees - CART

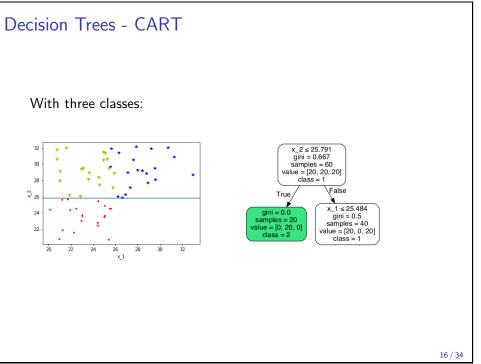
The second Split:

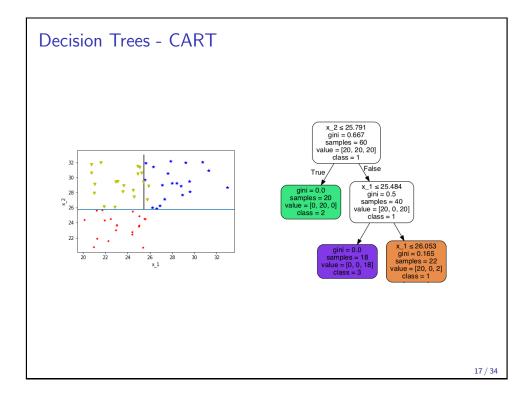
Car Make	VW	Ford	4/9 - (1/3 + 0)
	Υ, Ν	Ν	= 0.111
Туре	Polo	Not Polo	4/9 - (1/3 + 0)
	Υ, Ν	Ν	= 0.111
Mileage	above 85,000	below 85,000	4/9 - (0 + 0)
	N, N	Y	= 0.444
Price	> 1000	< 1000	4/9 - (0+ 0)
	N,N	Y	= 0.444

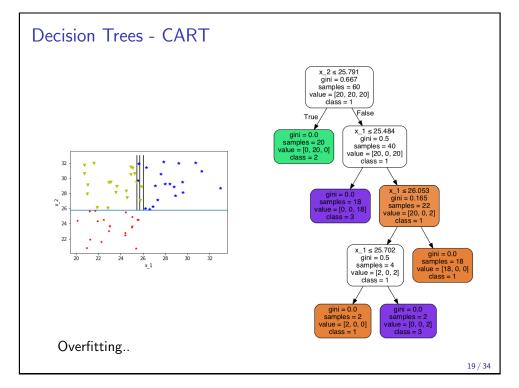
The best splits both remove all impurity so we are done:

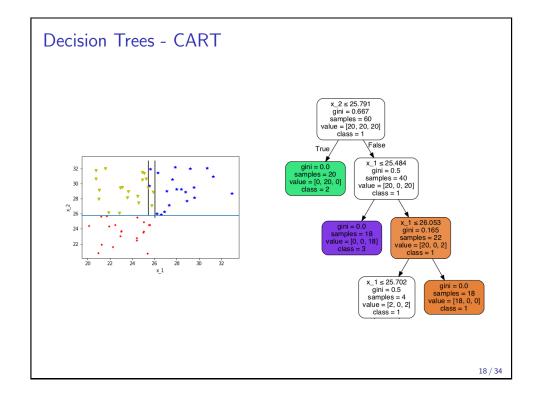
14 / 34









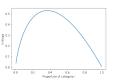


Decision Trees - ID3

Similar to CART, Iterative Dichotomy 3 (ID3) minimises entropy instead of Gini impurity Entropy:

$$H(S) = \sum_{x \in X} -p(x) \log_2 p(x)$$

Where S is the data set, X is the set of classes in S, p(x) is the proportion of the number of elements in class x to the number of elements in set S



Decision Trees - ID3

Information Gain is measured for a split along each possible attribute \boldsymbol{A}

$$I_G(S,A) = H(S) - \sum_{x \in X} \frac{|S_A|}{|S|} H(S_A)$$

ID3 is very similar to CART, though doesn't technically support numerical values

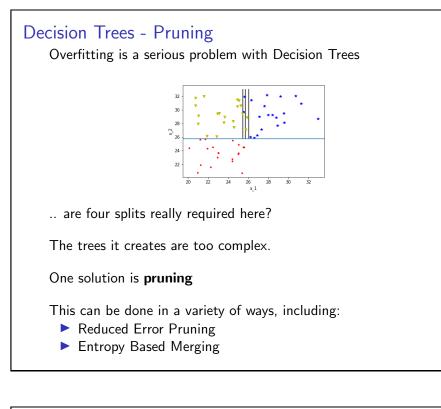
21 / 34

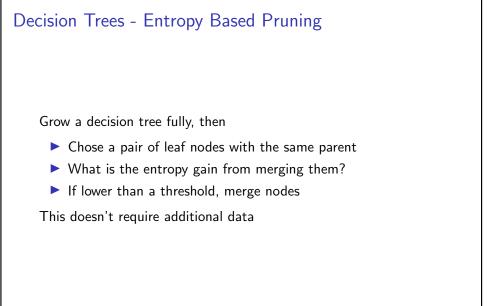
Decision Trees - Reduced Error Pruning

Growing a decision tree fully, then removing branches without reducing predictive accuracy, measured using a *validation set*.

- Start at leaf nodes
- Look up branches at last decision split
- replace with a leaf node predicting the majority class
- If validation set classification accuracy is not affected, then keep the change

This is a simple and fast algorithm that can simplify over complex decision trees $% \left({{{\mathbf{r}}_{i}}} \right)$





22/34

Decision Trees - Missing Data

ID3 ignores missing data, CART generally puts them to the node that has the largest number of the same category

- > You can assign a branch specifically to an unknown value
- You can assign it to the branch with the most of the same target value
- You can weight each branch using the known factors and put it in the most similar branch

25 / 34

Decision Trees - Regression

Maximise Variance Gain:

- Split on the feature values that give maximum gain in variance
- Should make similar numbers group together
- ▶ I. e. lower numbers on one side, higher on the other

Decision Trees - Regression

CART - Classification and Regression Trees How do we use decision trees for regression? i.e. to give numerical values rather than a classification.

Could use classification, but using each numerical value as a class..

Problems?

- ► How would you generalise?
- Loses all meaning of ordering, or similarity

Solution?

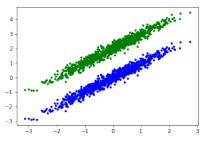
Use Variance instead of Gini or Entropy

26 / 34

Decision Trees - In General

There are problems with Decision Trees:

- Finding an optimal Tree is NP-complete
- ► They overfit, so don't generalise well Hence need to prune
- ▶ Information Gain is biased to features with more categories
- Splits are axis aligned..



Decision Trees - Ensemble Methods

Bagging: Bootstrap aggregating

Uniformly sample initial dataset with replacement in to m subsets For example:

if data set has 5 samples, $(s_1, s_2, s_3, s_4, s_5)$ make a whole bunch of similar data sets:

- \blacktriangleright (s_5 , s_2 , s_2 , s_1 , s_5)
- \blacktriangleright (s_4 , s_2 , s_1 , s_3 , s_3)
- \blacktriangleright (s_2 , s_5 , s_3 , s_1 , s_1)
- \blacktriangleright (s_3 , s_1 , s_2 , s_4 , s_4)

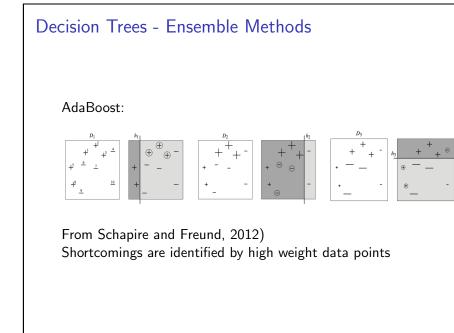
Train a different decision tree on each set

To classify, apply each classifier and chose the correct one by majority vote $% \left({{{\boldsymbol{x}}_{i}}} \right)$

If doing regression, take the mean of the values

This improves generalisation, as decreases variance without increasing bias

29 / 34



Decision Trees - Ensemble Methods

Boosting - Kearns and Valiant (1988): "Can a set of weak learners create a single strong learner?"

We make a weighted sum of very weak learners

- so long as they all learn different things then it works! AdaBoost:

- Train a weak learner on one feature
- See what it does well on
- Weight the remaining data more
- repeat

This makes a series of weak learners that have learned how to use different features to discriminate between classes.

30 / 34

Decision Trees - Ensemble Methods

Gradient boosting with trees - Friedman (1999): Generalise Adaboost to Gradient boosting to handle any loss function

Shortcomings are where the residuals are larger So fit a tree to the residuals:

- $(x_1, y_q f(x_1))$
- ▶ $x_2, y_q f(x_1)$
- ► $x_3, y_q f(x_1)$
- $\blacktriangleright x_n, y_q f(x_n)$

more detail available at

http://www.chengli.io/tutorials/gradient_boosting.pdf

Decision Trees - Ensemble Methods

Random Forests

Apply bagging

but when learning the tree for each subset, chose the split by searching over a random sample of the features

Reduces overfitting

Decision Trees - Summary

Advantages:

- Interpretability
- Ability to work with numerical and categorical features

34 / 34

Good with mixed tabular data

Disadvantages:

- Might not scale effectively for lots of classes
- ► Features that interact are problematic

33 / 34

