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Nearest Neighbours – Roadmap
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Nearest Neighbours – Textbook

Introduction to Data Mining, P. Tan et al



4/36

Nearest Neighbours – Overview

Credit: Jon Hare

Assign class of 
unknown point based 
on majority class of 
closest K neighbours 
in feature space 

Should be a dog?

Should be a cat?
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Nearest Neighbours – Learning Outcomes

o LO1: Demonstrate an understanding of the fundamentals of nearest 
neighbor classifiers, such as: (exam)

v Understanding the k-NN algorithm, including key steps like distance 
calculations, voting, etc

v Applying weighted k-NN and its use of weighted distance calculations

v Employing K-D trees for efficient nearest neighbor search

v Discussing advantages and disadvantages of k-NN models

o LO2: Implement the learned algorithms using K-NN methods (course 
work)

Assessment hints: Multi-choice Questions (single answer: concepts, calculation etc)

o Textbook Exercises: textbooks (Programming + Mining) 
o Other Exercises: https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
o ChatGPT or other AI-based techs 

https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
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• Key idea: the majority of neighbors should share the 
same label 
• Use training records directly to predict the class label of 

test/unseen cases by considering their neighbor correlations

• Store the training records without training explicit models 
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Nearest Neighbours – KNN Algorithm



7/36

• Uses k “closest” training points (nearest neighbors) for 
performing classification on test data

– Properties include

• Little or no prior knowledge about the distribution of the data

• A simple algorithm that stores all available cases and classifies 
new cases based on a similarity measure (e.g., L2 distance and 
cosine similarity)

• Computation merely happens on classification over test data

• Lazy algorithm, as they don’t use training data to do any 
generalization
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Nearest Neighbours – KNN Algorithm
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•  k-Nearest Neighbors of a record x are data points that 
have the k shortest distance to x
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X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

Nearest Neighbours – KNN Algorithm
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How k-NN works?

x1

x2

Which class 
should it belong 

to?

k=1
k=3

Key idea: 1) find k-Nearest Neighbors, 
2) assign the majority class 

Nearest Neighbours – KNN Algorithm
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• On choosing K:
– K must not be multiples of the total class number when each vote is 

equally weighted
• Odd numbers (1, 3, 5, 7, 9,…) for majority voting on 2-class classification
• 1, 3 (not good), 5, 7, 9 (not good)… for 3-class classification

– If K is too small, sensitive to noise points
– If K is too large, neighborhood may include points from other classes
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Nearest Neighbours – K-NN Algorithm
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• We want to train a model to decide an unknown goodie is 
a Chocolate Cake or Pineapple Tart
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Chocolate Cake Pineapple Tart

Evaluate on 2 attributes: “sweetness” and “buttery” level

Nearest Neighbours – Example
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• Suppose we have k set to 3 (k = 3 nearest neighbors)
– 2 neighbors are Pineapple Tarts and 1 neighbor is Chocolate Cake 
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Nearest Neighbours – Example

Credit: Zhaoxia Wang
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• Using majority voting, we will predict that the unknown 
goodie is likely to be a Pineapple Tart
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Nearest Neighbours – Example

Credit: Zhaoxia Wang



14/36

• However, for the situation shown below: suppose we have k set to 7 
(k = 7 nearest neighbors)
– 3 neighbors are Pineapple Tarts and 4 neighbors are Chocolate Cakes
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Nearest Neighbours – Example

Credit: Zhaoxia Wang
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• In such situation, using majority voting, we will predict that the 
unknown goodie is likely to be a Chocolate Cake? Yes?
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How to select 
a good k?

Nearest Neighbours – Example

Credit: Zhaoxia Wang
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Nearest Neighbours – Weighted KNN

Credit: Jo Grundy
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Nearest Neighbours – Weighted KNN

Credit: Jo Grundy
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Nearest Neighbours – Weighted KNN

Credit: Jo Grundy
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Nearest Neighbours – Weighted KNN

Credit: Jo Grundy
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Nearest Neighbours – KNN

Credit: Jo Grundy
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Nearest Neighbours – KNN

Credit: Jo Grundy

https://scikit-learn.org/stable/modules/cross_validation.html 

https://scikit-learn.org/stable/modules/cross_validation.html
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Nearest Neighbours – KNN

Credit: Jo Grundy

As the dimensionality 
increases, the average 
neighborhood size for k=10 
grows rapidly 

In very high dimensions 
(like 200), to find the 10 
nearest neighbors for a 
point, you essentially 
need to consider above 
90% of the entire dataset 
of 1 million points.
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Nearest Neighbours – KNN

Credit: Jo Grundy

for extremely high dim 
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Nearest Neighbours – KNN

Credit: Jo Grundy

Example:
v  height of a person may vary from 1.5m to 1.8m
v  weight of a person may vary from 30kg to 100kg
v  income of a person may vary from $10K to $1M

using methods e.g., Z-score
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Nearest Neighbours – KNN

Credit: Jo Grundy
https://en.wikipedia.org 

https://en.wikipedia.org/
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Nearest Neighbours – KNN

Credit: Jo Grundy
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Nearest Neighbours – K-D trees

Credit: Jo Grundy
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Nearest Neighbours – K-D trees

Credit: Jon Hare
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Nearest Neighbours – K-D trees

Credit: Jon Hare
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Nearest Neighbours – K-D trees

Credit: Jon Hare
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Nearest Neighbours – K-D trees

Credit: Jon Hare
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Nearest Neighbours – K-D trees

Credit: Jon Hare
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Nearest Neighbours – K-D trees

Credit: Jo Grundy
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Nearest Neighbours – LSH

Credit: Jo Grundy
https://www.researchgate.net 

https://www.researchgate.net/
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Nearest Neighbours – LSH

Credit: Jo Grundy
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Nearest Neighbours – Summary

Credit: Jo Grundy


