

# COMP6237 Data Mining Lecture 7: Decision Trees

#### Zhiwu Huang

Zhiwu.Huang@soton.ac.uk Lecturer (Assistant Professor) @ VLC of ECS University of Southampton

Lecture slides available here: http://comp6237.ecs.soton.ac.uk/zh.html

(Thanks to Prof. Jonathon Hare and Dr. Jo Grundy for providing the lecture materials used to develop the slides.)



# **Recap** – Document Filtering

PosteriorLikelihoodPriorNaive Bayes<br/>rules $P(c|d) = \frac{P(d|c)P(c)}{p(d)}$ 

#### where $p(d|c) = \prod p(f|c)$ Feature independence

The **prior** can be calculated:

- Empirically, using the total No. docs in c divided by the total number
- or assuming all classes to be equally probably

p(d) is constant, so therefore irrelevant, as same for all categories

 $n_c$  is the total number of documents in category c (e.g., spam,  $n_c=30$ )

**1. Continuous features**, e.g. heights and weights for cats/dogs, assume features are Gaussian distributed



**2. Discrete features**, e.g. frequencies of words in hams/spams, assume features are Binomial distributed



If a given test document x contains features money  $(f_1)$  and viagra  $(f_2)$  , then  $p(x|c)=p(f_1|c)\ast p(f_2|c)$ 

Maximum a Posteriori (MAP): choose the category with the largest posterior  $c = argmax_{c_i} p(c_i|x) \propto argmax_{c_i} p(x|c_i) * p(c_i)$ 



#### Decision Trees – Roadmap





### Decision Trees – Textbook

#### PART FOUR CLASSIFICATION

The classification task is to predict the label or class for a given unlabeled point. Formally, a classifier is a model or function M that predicts the class label  $\hat{y}$  for a given input example **x**, that is,  $\hat{y} = M(\mathbf{x})$ , where  $\hat{y} \in \{c_1, c_2, ..., c_k\}$  and each  $c_i$  is a class label (a categorical attribute value). Classification is a *supervised learning* approach,

Data Mining and Machine Learning: Fundamental Concepts and Algorithms M. L. Zaki and W. Meira

# 4 Classification: Alternative Techniques

The previous chapter introduced the classification problem and presented a technique known as the decision tree classifier. Issues such as model overfitting and model evaluation were also discussed. This chapter presents alternative techniques for building classification models—from simple techniques such as rule-based and nearest neighbor classifiers to more sophisticated techniques such as artificial neural networks, deep learning, support vector machines, and ensemble methods. Other practical issues such as the class imbalance and multiclass problems are also discussed at the end of the chapter.

Introduction to Data Mining, P. Tan et al



## Decision Trees – Overview (1/3)



Source: http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/



# Decision Trees – Overview (2/3)



Low degree of impurity

Four features, only three are used here, and one is only used once.

# Decision Trees – Overview (3/3)





University of Southampton



Decision surface of decision tree



# Decision Trees - Learning Outcomes

 LO1: Demonstrate an understanding of decision tree fundamentals, such as (exam)

- Calculating impurity and constructing a decision tree using algorithms like ID3,
   C4.5, etc, given a dataset and distance metric
- $\,\circ\,$  Addressing overfitting in decision trees like pruning
- Understanding ensemble methods using decision trees like bagging, boosting, random forests
- LO2: Implement the learned algorithms using decision trees (course work)

#### Assessment hints: Multi-choice Questions (single answer: concepts, calculation etc)

- *Textbook Exercises: textbooks (Programming + Mining)*
- Other Exercises: <u>https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf</u>
- ChatGPT or other AI-based techs



### **Decision Trees – Introduction**

Decision Trees can be 'hand crafted' by experts They can also be built up using machine learning techniques

They are **interpretable**, it is easy to see how they made a certain decision

They are used in a wide range of contexts, for example:

- Medicine
- Financial Analysis
- Astronomy

Especially in medicine, the explicit reasoning in decision trees means experts can understand why the algorithm has made its decision.



The CART algorithm was published by Breiman et al in 1984

- Find best split for each feature minimises impurity measure
- Find feature that minimises impurity the most
- Use the best split on that feature to split the node
- Do the same for each of the leaf nodes

The CART algorithm depends on an impurity measure. It uses Gini impurity

Gini impurity measures how often a randomly chosen element from a set would be incorrectly labelled if it was randomly labelled according to the distribution of labels in the set. The probabilities for each label are summed up.



• Gini Index for a given node t :

 $GINI(t) = 1 - \sum_{j=1}^{n_c} [p(j|t)]^2$ 

The smaller the purer

(where:  $n_c$  is the number of classes, and p(j | t) is the relative frequency of class j at node t).

- Maximum: (1 1/n<sub>c</sub>) when records are equally distributed among all classes, implying least interesting information
- Minimum: (0.0) when all records belong to one single class, implying most interesting information



It reaches its minimum when all cases in the node fall into a single category





Using Gini Index, evaluate which test condition is better



$$GINI(t) = 1 - \sum_{j}^{n_c} [p(j|t)]^2$$

#### Before splitting

| Fish       | 10 |  |
|------------|----|--|
| Don't Fish | 10 |  |

#### Split by "Sunny?"



Gini = 1 – [p(Fish)<sup>2</sup> + p(Don't Fish)<sup>2</sup>]

$$= 1 - [(10/20)^2 + (10/20)^2]$$

P(Fish) = 4/9 P(Don't Fish) = 5/9

Gini =  $1 - [(4/9)^2 + (5/9)^2] = 0.494$  updated value

P(Fish) = 6/11 P(Don't Fish) = 5/11

Gini =  $1 - [(6/11)^2 + (5/11)^2] = 0.496$ 

Question: How to aggregate the branchbased values for the whole split?

13/39



 When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i) \quad (1)$$

where k is number of branches GINI(i) is the i -th branch-based GINI  $n_i$  = number of records at child i, n = number of records at node p.

Information gain:  $Gain_{split} = GINI_{original} - GINI_{split}$ , The higher gain, the better split







### Decision Trees – ID3

Similar to CART, Iterative Dichotomy 3 (ID3) minimises entropy

Entropy at a given node t:

The smaller the purer

$$Entropy(t) = -\sum_{j=1}^{n_c} p(j|t) \log_2 p(j|t)$$
 (1)

(where:  $n_c$  is the number of classes, and p(j | t) is the relative frequency of class j at node t).

- Measures homogeneity of a node.
  - Maximum (log<sub>2</sub> n<sub>c</sub>) when records are equally distributed among all classes implying the least information
  - Minimum (0.0) when all records belong to one class, implying the most information
- Entropy based computations are similar to the GINI index computations





#### Decision Trees – ID3

Information Gain:

The higher the better

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$
(1)

where Entropy(p): entropy of Parent Node, Entropy(i):
 entropy of the i-th branch/partition, n is split into k partitions;
n\_i is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5



#### Example:

| Car Make | Туре    | Colour | Price          | Mileage | Bought? |
|----------|---------|--------|----------------|---------|---------|
| VW       | Polo    | Grey   | £2000          | 82000   | Yes     |
| Ford     | Fiesta  | Purple | $\pounds 1795$ | 95000   | Yes     |
| Ford     | Fiesta  | Grey   | £1990          | 90000   | No      |
| VW       | Golf    | Red    | £1800          | 120000  | Yes     |
| VW       | VW Polo |        | £900           | 150000  | No      |
| Ford     | Ka      | Yellow | £1400          | 100000  | Yes     |

Can go through and calculate best split for each feature.





ipynb demo



#### With three classes:



#### Overfitting..

Credit: Jo Grundy

# Decision Trees – Address Overfitting **Pruning**



Overfitting is a serious problem with Decision Trees



.. are four splits really required here?

The trees it creates are too complex.

One solution is pruning

This can be done in a variety of ways, including:

- Reduced Error Pruning
- Entropy Based Merging

Credit: Jo Grundy

# Decision Trees – Address Overfitting Reduced Error Pruning

Growing a decision tree fully, then removing branches without reducing predictive accuracy, measured using a *validation set*.

- Start at leaf nodes
- Look up branches at last decision split
- replace with a leaf node predicting the majority class
- If validation set classification accuracy is not affected, then keep the change

This is a simple and fast algorithm that can simplify over complex decision trees





# Decision Trees – Address Overfitting Entropy Based Pruning



Grow a decision tree fully, then

- Chose a pair of leaf nodes with the same parent
- What is the entropy gain from merging them?
- If lower than a threshold, merge nodes

This doesn't require additional data



# Decision Trees – Address Overfitting Missing Data



ID3 ignores missing data, CART generally puts them to the node that has the largest number of the same category

- You can assign a branch specifically to an unknown value
- You can assign it to the branch with the most of the same target value
- You can weight each branch using the known factors and put it in the most similar branch

| Referrer | Location | Read<br>FAQ | Pages<br>viewed | Service<br>chosen |
|----------|----------|-------------|-----------------|-------------------|
| Slashdot | USA      | Yes         | ?               | None              |

# Decision Trees – Address Overfitting **Regression**



CART - Classification and Regression Trees How do we use decision trees for regression? i.e. to give numerical values rather than a classification.

Could use classification, but using each numerical value as a class..

Problems?

# Decision Trees – Address Overfitting **Regression**



CART - Classification and Regression Trees How do we use decision trees for regression? i.e. to give numerical values rather than a classification.

Could use classification, but using each numerical value as a class..

Problems?

- How would you generalise?
- Loses all meaning of ordering, or similarity

Solution?

# Decision Trees – Address Overfitting **Regression**



Maximise Variance Gain:

- Split on the feature values that give maximum gain in variance
- Should make similar numbers group together
- I. e. lower numbers on one side, higher on the other



## **Decision Trees – Address Overfitting**

There are problems with Decision Trees:

- Finding an optimal Tree is NP-complete
- They overfit, so don't generalise well Hence need to prune
- Information Gain is biased to features with more categories
- Splits are axis aligned..







Bagging: Bootstrap aggregating

Uniformly sample initial dataset with replacement in to m subsets For example:

if data set has 5 samples,  $(s_1, s_2, s_3, s_4, s_5)$  make a whole bunch of similar data sets:

Train a different decision tree on each set To classify, apply each classifier and chose the correct one by majority vote



Boosting - Kearns and Valiant (1988): "Can a set of weak learners create a single strong learner?"

We make a weighted sum of very weak learners - so long as they all learn different things then it works! AdaBoost:

- Train a weak learner on one feature
- See what it does well on
- Weight the remaining data more
- repeat

This makes a series of weak learners that have learned how to use different features to discriminate between classes.









Assume  $x_5$  are difficult examples for Classifier C<sub>2</sub>





Final Decision:  $w_1 * C_1 + w_2 * C_2 + \cdots$ , where  $w_i$  is the weight for  $C_i$ , proportional to its classification performance



Gradient boosting with trees - Friedman (1999): Generalise Adaboost to Gradient boosting to handle any loss function

Shortcomings are where the residuals are larger

So fit a tree to the residuals:

x<sub>1</sub>, y<sub>q</sub> - f(x<sub>1</sub>)
x<sub>2</sub>, y<sub>q</sub> - f(x<sub>1</sub>)
x<sub>3</sub>, y<sub>q</sub> - f(x<sub>1</sub>)
:
x<sub>n</sub>, y<sub>q</sub> - f(x<sub>n</sub>)

more detail available at

http://www.chengli.io/tutorials/gradient\_boosting.pdf



Random Forests

Apply bagging but when learning the tree for each subset, chose the split by searching over a random sample of the features

Reduces overfitting



## **Decision Trees – Summary**

Advantages:

- Interpretability
- Ability to work with numerical and categorical features
- Good with mixed tabular data

Disadvantages:

- Might not scale effectively for lots of classes
- Features that interact are problematic