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Search and Rank

Searching the web has become the default way to find information.
However, there is so much information on the web, how can we
find what we are actually looking for?

This is information retrieval

“the activity of obtaining information resources relative to an
information need from a collection of information resources”
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Search and Rank - Problem

It’s all about the user.

‘What is the population of Southampton?’
A simple question to answer.. (250,000),

But which Southampton do I mean?
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Search and Rank - Problem

Information retrieval exercise

‘Where is the best Chinese food? I’m hungry!’

If I am searching for the best Chinese food, I need somewhere near
me, that isn’t too expensive, that will deliver to my house, and will
not take too long.

A good information retrieval system should be aware of the implicit
preferences I have.
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Search and Rank - History

Information retrieval was originally aided by a catalogue.

For the ancient library of Alexandria, ca. 300BC, Greek poet and
scholar Callimachus made the ‘Pinakes’ (tables)

This was a list of all the works sorted by genre, but only small
fragments survive. The idea survived, and as soon as books could
be printed, they had printed indexes (1460 CE)

In 1842, a Paris bookseller Jean Claude Brunet had developed a
simple classification system for his books.

Most modern libraries use the Dewey Decimal system (1876) which
introduced idea of location based on subject.
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Search and Rank - History

With computers,

I 1960s, databases were indexed

I 1970s, larger boolean systems on the computer

I 1980s, expert systems, natural language processing

I 1990s, the internet.. ranking

I 2000 - now, much better search and ranking, big data,
language modelling
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Search and Rank - Text retrieval

Text retrieval:

I For a collection of text documents - text corpus

I User provides query - expresses information need

I Search engine returns relevant documents

This is search technology in industry
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Search and Rank - Text retrieval

Database Text

Information Well-defined structure
and semantics

Unstructured, ambigu-
ous semantics

Query Well defined semantics,
complete specification
(eg SQL)

Ambiguous, incomplete
specification

Answers Matched records Relevant documents

You cannot prove mathematically what the best ways to retrieve a
text item is. It is empirically defined, noone knows what the user
wants until the user finds it.
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Search and Rank - Text retrieval

I Boolean Model: get every document that satisfies a Boolean
Expression

result selection

I Vector Space Model: how similar is document to query
vector? ranked results

I Probabilistic Model: what is the probability that the
document is generated by the query? ranked results

Selecting results is hard: if query is over-constrained, you may get
nothing. If query is under-constrained, you may get way too many
unsorted results.

Ranking is preferred, allows prioritisation.
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Search and Rank - Text retrieval

Robertson 1977:
Using Decision Theory, the optimal strategy for finding the most
relevant document is:
To give a ranked list of documents in descending order of
probability that a document is relevant to the query.
This assumes:

I utility of document is independent of utility of any other
document

I user browses results sequentially

Do these assumptions hold?
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Quick Recap - One Hot Encoding

We use a ‘Bag of Words’, where each word is a vector:

I a → [1, 0, 0, 0, 0, 0, 0, 0, . . . , 0]

I aa → [0, 1, 0, 0, 0, 0, 0, 0, . . . , 0]

I aardvark → [0, 0, 1, 0, 0, 0, 0, 0, . . . , 0]

I aardwolf → [0, 0, 0, 1, 0, 0, 0, 0, . . . , 0]

This is called One Hot Encoding
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Search and Rank - Vector Space Model
Vector Space Model is quite simple.

I Each document is a vector
I Each query is a vector
I Assume that if close together in space they are similar
I Rank each document by similarity

https://cloud.google.com/blog/products/gcp/problem-solving-with-ml-

automatic-document-classification
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Search and Rank - Vector Space Model

Each document is represented by a term vector
A Term is a basic concept, e.g. word or phrase
This gives an N-dimensional space for N terms

I Query Vector q = (x1, x2, . . . , xN), xi ∈ < is query term weight

I Document Vector d = (y1, y2, . . . , yN), yi ∈ < is document
term weight

relevance(q, d ) ∝ similarity(q, d ) = f(q, d )
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Search and Rank - Vector Space Model

As seen before, each term is assumed to be orthogonal
We still don’t know:

I Which basic concepts to select for the terms

I How to assign weights (x1, x2, . . . , xN) and (y1, y2, . . . , yN)

I How to define the similarity measure (f (q,d ))
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Quick Recap - Documents

e.g. ”The quick brown fox jumped over the lazy dog.”
becomes:

Tokenisation
‘The’: 1, ‘quick’: 1, ‘brown’: 1, ‘fox’: 1, ‘jumped’: 1, ‘over’: 1,
‘the’: 1, ‘lazy’: 1, ‘dog.’: 1

After further tokenising and sorting, you could get:
‘brown’: 1, ‘dog’: 1, ‘fox’: 1, ‘jumped’: 1, ‘lazy’: 1,‘over’: 1,
‘quick’: 1, ‘the’: 2

Further stemming and removal of stop words could give:
‘brown’: 1, ‘dog’: 1, ‘fox’: 1, ‘jump’: 1, ‘lazi’: 1,‘over’: 1, ‘quick’:
1
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Quick Recap - Documents

The bag of words vector for a document will be very sparse

The vocabulary or lexicon will be the set of all (processed) words
across all documents known to the system.

For a document, the vector contains the number of occurrences of
each term, like a histogram

Vectors will have very high number of dimensions, but are very
sparse
Alice ipynb demo
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Search and Rank - Vector Space Model
Zipf’s law

States that the frequency of a word is proportional to the inverse
of its rank, i.e. the second most common word will be half the
frequency of the first, the third will be a third the frequency of the
first, e.t.c.
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Search and Rank - Vector Space Model
We should remove the most common and the least common, as
they hold little information, and may skew any vector to look
similar.
We should also remove the very rare words, as they would make
the document vector unnecessarily sparse without gaining much
information.
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Search and Rank - Vector Space Model

How to search the Vector Space Model?

If my query vector is red, which of the three document vectors is it
closest to?
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Quick Recap - Cosine Similarity

I Cosine Similarity

0 1 2 3 4
0

1

2

3

4

5 p

qθ

Only measures direction, not
magnitude of vector.

p and q are N-dim vectors,
p = [p1, p2, ..., pN ],
q = [q1, q2, ..., qN ]

Cosine Similarity:

cos(θ) =
p.q
|p||q|

=

∑N
i=1 piqi√∑N

i=1 p
2
i

√∑N
i=1 q

2
i∑

p2i and q2i can be
precomputed and stored
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Search and Rank - Vector Space Model

Inverted Index:
A mapping from content to location, e.g. in a set of documents.

Inverted index ipynb demo

alic (0, 399), (1, 207), (2, 232)

said (0, 462), (1, 11), (2, 0)

cooper (0, 0), (1, 398), (2, 0)

spring (0, 0), (1, 2), (2, 218)

not (0, 145), (1, 21), (2, 5)

retriev (0, 0), (1, 111), (2, 47)

littl (0, 128), (1, 4), (2, 3)

one (0, 105), (1, 21), (2, 5)
A posting is a pair formed by a document ID and the number of
times the specific word appeared in that document.
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Search and Rank - Vector Space Model

To efficiently compute the cosine similarity, look up the relevant
postings list and accumulate similarities only for the documents in
those lists.
alic (0, 399), (1, 207), (2, 232)

said (0, 462), (1, 11), (2, 0)

cooper (0, 0), (1, 398), (2, 0)

spring (0, 0), (1, 2), (2, 218)

not (0, 145), (1, 21), (2, 5)

retriev (0, 0), (1, 111), (2, 47)

littl (0, 128), (1, 4), (2, 3)

one (0, 105), (1, 21), (2, 5)

For example: ”Alice Cooper”
Accumulation table:

Doc ID Frequency

0 399

1 207

2 232
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To efficiently compute the cosine similarity, look up the relevant
postings list and accumulate similarities only for the documents in
those lists.
alic (0, 399), (1, 207), (2, 232)

said (0, 462), (1, 11), (2, 0)

cooper (0, 0), (1, 398), (2, 0)

spring (0, 0), (1, 2), (2, 218)

not (0, 145), (1, 21), (2, 5)

retriev (0, 0), (1, 111), (2, 47)

littl (0, 128), (1, 4), (2, 3)

one (0, 105), (1, 21), (2, 5)

For example: ”Alice Cooper”
Accumulation table:

Doc ID Frequency

0 399

1 207 + 398

2 232
cosine similarity ipynb demo
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Search and Rank - Vector Space Model

Using frequency of a word in a document is not always a good idea

How can we weight these vectors better?

I Binary weights
record only if a word is present or absent in the vector

I Raw Frequency
record frequency of occurrence of a term in the vector

I TF-IDF - Term Frequency - Inverse Document Frequency
I Term Frequency - the raw frequency of a word in a document

usually normalised by the number of words in the document
I Inverse Document Frequency - 1/number of occurrences of

word in all documents

A high weight in TF-IDF is reached by a high frequency in a
given document, but low frequency in the whole collection of
documents, this would filter out the more common terms.
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Search and Rank - Vector Space Model

There are many variants of TF-IDF
For the TF (term frequency term:

I term frequency
ft,d∑

t′∈d ft,d

I log normalisation log(1 + ft,d)

I double normalisation K K + (1− K )
ft,d

maxt′∈d f ′t,d

For the inverse document frequency term:

I Inverse document frequency log N
nt

I Inverse document frequency smooth log N
1+nt

I Inverse document frequency max log
maxt′∈d nt′

i+nt

I Probabilistic inverse document frequency log N−nt
nt
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Search and Rank - Vector Space Model

Then TF-IDF is calculated as TF × IDF
TF-IDF ipynb demo

Some possible schemes for TF-IDF:

Document Query

ft,d log
N

nt
(K + K

ft,q
maxt ft,q

) log N
nt

K = 0.5

1 + log ft,d log(1 + N
nt

)

(1 + log ft,d) log
N

nt
(1 + log ft,q) log N

nt
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Search and Rank - Retrieval System

Docs

Doc Rep-
resentation

Index

Query

Query Rep-
resentation

Scorer User Feedback

Results

Tokeniser &

Cleaning
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Search and Rank - Retrieval System

Building the index is difficult with big data:
Can’t just use memory

Can use sort based methods:

I collect local <term, doc, freq> tuples in a run

I sort tuples within the run and write to disk

I merge runs on disk

I output inverted index
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Search and Rank - Retrieval System

Go through a few
documents..
<”alic”, 0, 399>
<”said”, 0, 462>
<”not”, 0, 145>
..
<”alic”, 1, 207>
<”said”, 1, 11>
<”cooper”, 1, 398>
...
<”alic”, 2, 232>
<”spring”, 2, 218>
<”not”, 2, 5>

Sort by term
<”alic”, 0, 399>
<”alic”, 1, 207>
<”alic”, 2, 232>
..
<”cooper”, 1, 398>
<”not”, 0, 145>
<”not”, 2, 5>
...
<”said”, 0, 462>
<”said”, 1, 11>
<”spring”, 2, 218>

This is one run.

Then run a merge
sort with other runs,
and build the inverted
index with the sorted
data
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Search and Rank - Improving the system

Improving Information retrieval:
Can use Location weighting:

I More relevant if closer to start of document

I Exact phrase or proximity of terms in query

Requires term position of every instance in the document to be
indexed
i.e. ”alic” = [Doc0, 399, < 3, 11, 29, ..>]

Increases size of index dramatically, need to use compression
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Search and Rank - Web Search

For web pages, we can use the number of links to a document as a
way of scoring them

However this is prone to manipulation, as you can make lots of
pages that all point to each other lots of times.

Page and Brin: PageRank

Markus will cover this in May

In brief: Calculates the importance of a page from the importance
of all the other pages that link to it and the number of links each
of those other pages have.
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Search and Rank - User Feedback

What user feedback do we get with a web search?

Use what they actually click on. Documents that are more clicked
on could be more important.
Can also learn associations between queries and documents, and if
this query is met again, use this to increase the rank of the
document that was clicked on before for this query.
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Search and Rank - Result Diversification

Is a ranked list always the right thing?

e.g. If I search for ”University”
Do I want..

I Lots of links to Southampton University..?
or

I Links to a range of universities

A diverse range of results has a better chance of finding what the
search was actually looking for.
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Search and Rank - Summary

Search engines are a key tool in Data Mining
Important Points:

I Feature extraction

I Scalable and efficient indexing and search

Information Retrieval Process:
I Encode Documents

I stemming, lemmatization, stop word removal
I Make feature vector (e.g. Bag of words, TF-IDF..)

I Make index (inverted index aids search)

I Encode query

I Search index using encoded query
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