
Data Mining
Lecture 4: Embedding Data

Jo Grundy

ECS Southampton

March 2, 2023

1 / 1

Embedding Data

Understanding large data sets is hard
Especially when the data are highly dimensional
It would help if we knew:

I which data items are similar

I which features are similar

2 / 1

Embedding Data

With 2D data, we can plot it to easily visualise relationships
This is not possible with highly dimensional data
However: PCA can reduce the dimensionality to 2, based on the
first and second principle axes

3 / 1

Embedding Data - PCA

We can use the so called ‘Swiss Roll’ data set to exemplify this:

The data in 3D has 4 clearly
separate groups

Using PCA, it does not separate
the data well at all

4 / 1

Embedding Data - PCA

We can use the so called ‘Swiss Roll’ data set to exemplify this:

The data in 3D has 4 clearly
separate groups

Using PCA, it does not separate
the data well at all

4 / 1

Embedding Data - PCA

Unfortunately there is no control over the distance measure

Using axes of greatest variance does not mean similar things
appear close together.

PCA is only rotation of original space, followed by removal of less
significant dimensions

5 / 1

Embedding Data - Self-Organising Maps

Kohonen 1982: Self-Organising Maps (SOM)

I Inspired by neural networks

I 2D n by m array of nodes

I Units close to each other are considered to be neighbours

I Maps high dimensional vectors to unit with coordinates
closest (Euclidean Distance)

I This is the best matching unit

6 / 1

Embedding Data - Self-Organising Maps
SOMs: two phases

I training

I mapping

To start training, the set of nodes each has a random starting
position defined in the feature space.

This is then updated by taking one feature vector, finding which
unit is the best matching unit (BMU) then moving that unit and,
to a lesser extent, its neighbours, closer to that data point

7 / 1

Embedding Data - Self-Organising Maps

Algorithm 1: Training Self-Organising Maps

Data: N data points with d dimensional feature vectors Xi

i = 1 . . .N , number of iterations λ
w = randomly initialise n xm units with weight vector ;
t = 0;
while t < λ do

for each xi do
BMU =wnm with min distance;
Update BMU and its neighbours by moving closer to xi ;

end
t = t + 1

end

8 / 1

Embedding Data - Self-Organising Maps

To update the weight vector w

w(t + 1) = w(t) + θ(u, v , t)α(t)(xi −w(t))

where θ is the neighbourhood weighting function (usually
Gaussian)
α is the learning rate
xi is the input vector
u is the unit, v is the

Both the learning rate and the neighbourhood weighting function
get smaller over time
Java SOM demo

9 / 1

Embedding Data - Self-Organising Maps

The data in 3D has a clear
structure

Using SOM, it can much better
group the data

10 / 1

Embedding Data - Self-Organising Maps

The data in 3D has a clear
structure

Using SOM, it can much better
group the data

10 / 1

Embedding Data - Self-Organising Maps
With the MNIST digits, the results are quite impressive

11 / 1

Embedding Data - Multidimensional Scaling

Multi Dimensional Scaling involves:

I Start with data in a high dimensional space and a set of
corresponding points in a lower dimensional space

I Optimise the positions of points in lower dimensional space so
their Euclidean distances are like the distances between the
high dimensional points

I Can use any distance measure in the high D space

12 / 1

Embedding Data - Multidimensional Scaling

There are two main sorts of multidimensional scaling:

I Metric MDS - Tries to match distances

I Non-metric MDS - tries to match rankings

Only requires distances between items as input
Unlike PCA and SOM, there is no explicit mapping

Both metric and non-metric measure goodness of fit between two
spaces
They try to minimise a stress function

13 / 1

Embedding Data - Multidimensional Scaling

Stress functions:

I Least-squares scaling / Kruskal-Shepard scaling

I Shepard-Kruskal non-metric scaling

I Sammon Mapping

Sammon Mapping is given by:

S(z1, z2, . . . , zn) =
∑
i 6=j

(δij − ||zi − zj ||)2

δij

where δi ,j is the distance in high dimensional space
and ||zi − zj || is the distance in low dimensional space
Looks at all combinations of points with all different points.

14 / 1

Embedding Data - Multidimensional Scaling

For non-linear, need to use gradient descent
start at arbitrary point, take steps in direction of gradient, with
step size a proportion of the gradient magnitude.

zj(k + 1) = zj(k)− γk∆zjS(z1(k), z2(k), . . . , zn(k))

Where the derivative of the Sammon stress is:

∆zjS() = 2
∑
i 6=j

(||zi (k)− zj(k)|| − δij
δij

)(zj(k)− zi (k)

||zi (k)− zj(k)||

)

15 / 1

Embedding Data - Multidimensional Scaling

The data in 3D has a clear
structure.
MDS gives..

Not particularly brilliant, has red
the same distance from yellow as
orange and green
Has however preserved the
structure from 3D in to 2D

16 / 1

Embedding Data - Multidimensional Scaling

The data in 3D has a clear
structure.
MDS gives..

Not particularly brilliant, has red
the same distance from yellow as
orange and green
Has however preserved the
structure from 3D in to 2D

16 / 1

Embedding Data - Stochastic Neighbour Embedding

Stochastic Neighbour Embedding (SNE)
Works in a similar way to MDS
MDS optimises distances, SNE optimises the distribution of data
Aims to make the distribution of the projected data in low
dimensional space close to the actual distribution in high
dimensional space

17 / 1

Embedding Data - Stochastic Neighbour Embedding

To calculate the source distribution:

We define a conditional probability that high-dimensional xi would
pick xj as a neighbour if the neighbours were picked in proportion
to their probability density under a Gaussian centred at xi

pj |i =
exp−||xi−xj ||

2/2σ2
i∑

k 6=i exp
−||xi−xk ||2/2σ2

i

The SNE algorithm chooses σ for each data point such that
smaller σ is chosen for points in dense parts of the space, and
larger σ is chosen for points in sparse parts

18 / 1

Embedding Data - Stochastic Neighbour Embedding

To calculate the target distribution:

Define a conditional probability that low-dimensional yi would pick
yj as a neighbour if the neighbours were picked in proportion to
their probability density under a Gaussian centred at yi

qj |i =
exp
(
− ||yi − yj ||2

)∑
k 6=i exp

(
− ||yi − yk ||2

)
In this space we assume the variance of all Gaussians is 1/

√
2 in

this space

19 / 1

Embedding Data - Stochastic Neighbour Embedding

To measure the difference between two probability distributions we
use the Kullback-Leibler (KL) Divergence:

DKL(P|Q) =
∑
i

P(i) log
P(i)

Q(i)

The cost function is the KL divergence summed over all data points

C =
∑
i

∑
j

pi |j log
pj |i
qj |i

C can be minimised using gradient descent - but..
difficult to optimise, leads to crowded visualisations, big clumps of
data together in the center

20 / 1

Embedding Data - t- Distributed Stochastic Neighbour
Embedding

In 2008 Maaten and Hinton came up with a way to improve SNE,
by replacing the Gaussian distribution for the lower dimensional
space with a Student’s t distribution.

Student’s t distribution in red, Gaussian distribution in blue

The Student’s t distribution has a much longer tail, helps avoid
clumping in the middle.

21 / 1

Embedding Data - t- Distributed Stochastic Neighbour
Embedding

The cost function is also modified, making gradients simpler, so
faster to compute

pij =
pj |i + pi |j

2N

To alleviate crowding using Student’s t distribution in the lower
dimensional space:

qij =
(1 + ||xi − xj ||)−1∑
k 6=i (1 + ||xi − xk ||)−1

we use 1 degree of freedom with the Student’s t distribution,
equivalent to a Cauchy distribution

22 / 1

Embedding Data - t- Distributed Stochastic Neighbour
Embedding

SNE gives good groupings, but
without clear separation

t-SNE gives clear separated
groups

van der Maaten and Hinton, JMLR (2008) 2579

23 / 1

Embedding Data - t- Distributed Stochastic Neighbour
Embedding

SNE gives good groupings, but
without clear separation

t-SNE gives clear separated
groups

van der Maaten and Hinton, JMLR (2008) 2579
23 / 1

Embedding Data - t- Distributed Stochastic Neighbour
Embedding

For the Swiss Roll data:

Lorenzo Amabili, http://lorenzoamabili.github.io

24 / 1

http://lorenzoamabili.github.io

Embedding Data
Many embedding techniques are available!

Code from sklearn.manifold
https://scikit-learn.org/stable/modules/manifold.html

25 / 1

https://scikit-learn.org/stable/modules/manifold.html

Embedding Data

Instead of projecting high dimensional data down in to 2 or 3
dimensions, we can use a medium dimensionality, keeping the
useful information, capturing the key distinguishing features
This is called an embedding
For example: word2vec

26 / 1

Embedding Data - One Hot Encoding
For example: Documents

We use a ‘Bag of Words’, where each word is a vector:

I a → [1, 0, 0, 0, 0, 0, 0, 0, . . . , 0]

I aa → [0, 1, 0, 0, 0, 0, 0, 0, . . . , 0]

I aardvark → [0, 0, 1, 0, 0, 0, 0, 0, . . . , 0]

I aardwolf → [0, 0, 0, 1, 0, 0, 0, 0, . . . , 0]

This is called One Hot Encoding
(also seen in the Discovering Groups lecture)

27 / 1

Embedding Data - One Hot Encoding

What problems does this encoding have?

I all vectors are orthogonal, i.e. unrelated

But we know that many words in English are related, e.g. ‘rain’,
‘drizzle’, ‘downpour’, ‘shower’, ‘squall’ all mean pretty much the
same thing.

I vectors are very long and very sparse

English has over 250,000 words (depending on how you count
them) so each vector that could fully describe a document should
be 250,000 long for every word.

28 / 1

Embedding Data - word2vec

Boiling this data down to a manageable vector size, while still
retaining meaning is not a simple task

word2vec was proposed in 2013 by Mikolov et al (although the
paper was rejected by the ICLR conference!)

It involved using a simple neural net to predict the words on either
side of the target word

29 / 1

Embedding Data - word2vec

For example:
“the quick brown fox jumps over the lazy dog”

The word ‘brown’ has the words ‘the’, ‘quick’, ‘fox’ and ‘jumps’
close by
This gives training samples:

I ‘the’, ‘brown’

I ‘quick’, ‘brown’

I ‘fox’, ‘brown’

I ‘jumps’, ‘brown’

which we train a simple neural network with.

30 / 1

Embedding Data - word2vec

x1

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

o1

o2

o3

o4

o5

o6

o7

o8

w w ′

input vector is the ‘one hot’
encoding of the word in question

the output vector is the vector
for the predicted word.

the hidden layer learns a lower
dimensional encoding of each
word

in training the correct word is
used as the teaching signal, and
back propagation is used to learn
the weights to the hidden layer.

the output from the hidden layer
after training is used as the lower
dimensional representation

31 / 1

Embedding Data - word2vec

x1

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

o1

o2

o3

o4

o5

o6

o7

o8

w w ′

input vector is the ‘one hot’
encoding of the word in question

the output vector is the vector
for the predicted word.

the hidden layer learns a lower
dimensional encoding of each
word

in training the correct word is
used as the teaching signal, and
back propagation is used to learn
the weights to the hidden layer.

the output from the hidden layer
after training is used as the lower
dimensional representation

31 / 1

Embedding Data - word2vec

x1

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

o1

o2

o3

o4

o5

o6

o7

o8

w w ′

input vector is the ‘one hot’
encoding of the word in question

the output vector is the vector
for the predicted word.

the hidden layer learns a lower
dimensional encoding of each
word

in training the correct word is
used as the teaching signal, and
back propagation is used to learn
the weights to the hidden layer.

the output from the hidden layer
after training is used as the lower
dimensional representation

31 / 1

Embedding Data - word2vec

x1

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

o1

o2

o3

o4

o5

o6

o7

o8

w w ′

input vector is the ‘one hot’
encoding of the word in question

the output vector is the vector
for the predicted word.

the hidden layer learns a lower
dimensional encoding of each
word

in training the correct word is
used as the teaching signal, and
back propagation is used to learn
the weights to the hidden layer.

the output from the hidden layer
after training is used as the lower
dimensional representation

31 / 1

Embedding Data - word2vec

x1

x2

x3

x4

x5

x6

x7

x8

h1

h2

h3

h4

o1

o2

o3

o4

o5

o6

o7

o8

w w ′

input vector is the ‘one hot’
encoding of the word in question

the output vector is the vector
for the predicted word.

the hidden layer learns a lower
dimensional encoding of each
word

in training the correct word is
used as the teaching signal, and
back propagation is used to learn
the weights to the hidden layer.

the output from the hidden layer
after training is used as the lower
dimensional representation

31 / 1

Embedding Data - word2vec

These lower dimensional representations can include a good deal of
semantic meaning

i.e. vector(king) - vector(man) + vector(woman) ≈ vector(queen)

king

queen

man

woman

From Mikolov et al NIPS 2013

32 / 1

Embedding Data - Summary
Dimensionality reduction and visualisation is key to understanding
the data

Useful for your coursework

There are many ways to do this, with the sklearn.manifold

library:

33 / 1

