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Variance and Covariance - Expectation

Recap :

I Expectation and Variance

I Covariance

I Basis set

I PCA

I SVD, truncated SVD
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Variance and Covariance - Expectation

A random variable takes on different values due to chance

The sample values from a single dimension of a featurespace can
be considered to be a random variable

The expected value E [X ] is the most likely value a random variable
will take.

If we assume that the values an element of a feature can take are
all equally likely then the expected value is just the mean value.
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Variance and Covariance - Variance

Variance = The expected squared difference from the mean

E [(X − E [X ])2]

i.e. the mean squared difference from the mean

σ2(x) =
1

n
=

1

n

n∑
i=1

(xi − µ)2

A measure of how spread out the data is
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Variance and Covariance - Covariance

Covariance = the product of the expected difference between each
feature and its mean

E [(x − E [x ])(y − E [y ])]

i.e. it measures how two variables change together

σ(x , y) =
1

n

n∑
i=1

(x − µx)(y − µy )

When both variables are the same, covariance = variance, as
σ(x , x) = σ2(x)
If σ2 = 0 then the variables are uncorrelated
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Variance and Covariance - Covariance

A covariance matrix encodes how all features vary together
For two dimensions: [

σ(x , x) σ(x , y)

σ(y , x) σ(y , y)

]

For n dimensions:
σ(x1, x1) σ(x1, x2) . . . σ(x1, xn)

σ(x2, x1) σ(x2, x2) . . . σ(x2, xn)
...

...
. . .

...

σ(xn, x1) σ(xn, x2) . . . σ(xn, xn)


This matrix must be square symmetric
(x cannot vary with y differently to how y varies with x!)
2d covariance demo
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Variance and Covariance - Covariance

Mean Centering = subtract the of all the vectors from each vector
This gives centered data, with mean at the origin

ipynb mean centering demo
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Variance and Covariance - Covariance

If you have a set of mean centred data with d dimensions, where
each row is your data point:

Z =

[
x11 x12 . . . x1d

x21 x22 . . . x2d

]
Then its inner product is proportional to the covariance matrix

C ∝ ZTZ
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Variance and Covariance - Covariance

Principal axes of variation:
1st principal axis: direction of greatest variance
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Variance and Covariance - Covariance

2nd Principal axis: direction orthogonal to 1st principal axis in
direction of greatest variance
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Variance and Covariance - Basis Set
In linear algebra, a basis set is defined for a space with the
properties:
I They are all linearly independent
I They span the whole space

Every vector in the space can be described as a combination of
basis vectors

Using Cartesian coordinates, we describe every vector as a
combination of x and y directions
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Variance and Covariance - Basis Set

Eigenvectors and eigenvalues
An eigenvector is a vector that when multiplied by a matrix A
gives a value that is a multiple of itself, i.e.:

Ax = λx

The eigenvalue λ is the multiple that it should be multiplied by.

eigen comes from German, meaning ’Characteristic’ or ’Own’

for an n × n dimensional matrix A there are n
eigenvector-eigenvalue pairs
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Variance and Covariance - Basis Set

So if A is a covariance matrix, then the eigenvectors are its
principal axes.

The eigenvalues are proportional to the variance of the data along
each eigenvector

The eigenvector corresponding to the largest eigenvalue is the first
principal axis
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Variance and Covariance - Basis Set

To find eigenvectors and eigenvalues for smaller matrices, there are
algebraic solutions, and all values can be found
For larger matrices, numerical solutions are found, using
eigendecomposition.
Eigen - Value - Decomposition (EVD):

A = QΛQ−1

Where Q is a matrix where the columns are the eigenvectors, and
Λ is a matrix with eigenvalues along the corresponding diagonal

Covariance matrices are real symmetric, so Q−1 = QT Therefore:

A = QΛQT

This diagonalisation of a covariance matrix gives the principal axes
and their relative magnitudes
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Variance and Covariance - Basis Set

A = QΛQT

This diagonalisation of a covariance matrix gives the principal axes
and their relative magnitudes

Usually the implementation will order the eigenvectors such that
the eigenvalues are sorted in order of decreasing value.
Some solvers only find the top k eigenvalues and corresponding
eigenvectors, rather than all of them.
Java demo: EVD and component analysis

15 / 28



Variance and Covariance - PCA
Principal Component Analysis - PCA
Projects the data in to a lower dimensional space, while keeping as
much of the information as possible.

X =

2 1

3 2

3 3


For example: data set X can be transformed so only information
from the x dimension is retained using a projection matrix P:
Xp = XP
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Variance and Covariance - PCA

However if a different line is chosen, more information can be
retained.

This process can be reversible, (Using X̂ = XpP
−1) but this is

lossy if the dimensionality has been changed.
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Variance and Covariance - PCA
In PCA, a line is chosen that minimises the orthogonal distances of
the data points from the projected space.
It does this by keeping the dimensions where it has the most
variation, i.e. using the directions provided by the eigenvectors
corresponding to the largest eigenvalues of the estimated
covariance matrix
It uses the mean centred data to give the matrix proportional to
the covariance matrix

(ipynb projection demo)
18 / 28



Variance and Covariance - PCA

Algorithm 1: PCA algorithm using EVD

Data: N data points with feature vectors Xi i = 1 . . .N
Z = meanCentre(X );

eigVals, eigVects = eigendecomposition(ZTZ );
take k eigVects corresponding to k largest eigVals;
make projection matrix P;
Project data Xp = ZP in to lower dimensional space;

(Java PCA demo)
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Variance and Covariance - SVD

Eigenvalue Decomposition, EVD, A = QΛQT only works for
symmetric matrices.
Singular value decomposition - SVD

A = UΣV T

where U and V are both different orthogonal matrices, and Σ is a
diagonal matrix
Any matrix can be factorised this way.

Orthogonal matrices are where each column is a vector pointing in
an othogonal direction to each other, UTU = UUT = I
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Variance and Covariance - SVD

A
m x n

U
m x p

Σ
p x p

V
p x n

Where p is rank of matrix A

U called left singular vectors, contains the eigenvectors of AAT ,
V called right singular vectors, contains the eigenvectors of ATA
Σ contains square roots of eigenvalues of AAT and ATA

If A is matrix of mean centred featurevectors, V contains principal
components of the covariance matrix
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Variance and Covariance - SVD

Algorithm 2: PCA algorithm using SVD

Data: N data points with feature vectors Xi i = 1 . . .N
Z = meanCentre(X );
U, Σ, V = SVD(Z );
take k columns of V corresponding to the largest k values of Σ;
make projection matrix P;
Project data Xp = ZP in to lower dimensional space;

Better than using EVD of ZTZ as:

I has better numerical stability

I can be faster
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Variance and Covariance - SVD

SVD has better numerical stability:
E.g. Läuchli matrix:

XTX =

1 ε 0 0

1 0 ε 0

1 0 0 ε




1 1 1

ε 0 0

0 ε 0

0 0 ε

 =

1 + ε2 1 1

1 1 + ε2 1

1 1 1 + ε2


If ε is very small, 1 + ε2 will be counted as 1, so information is lost
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Variance and Covariance - Truncated SVD

A
m x n ≈

UUr

m x p

m x r

Σ

Σr

p x p
r x r V

p x n

Vr

r x n

Uses only the largest r singular values (and corresponding left and
right vectors)
This can give a low rank approximation of A, Ã = UrΣrVr

has the effect of minimising the Frobenius norm of the difference
between A and Ã
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Variance and Covariance - SVD

SVD can be used to give a Pseudoinverse:

A+ = VΣ−1UT

This is used to solve Ax = b for x where ||Ax − b||2 is minimised
i.e. in least squares regression x = A+b
Also useful in solving homogenous linear equations Ax = 0
SVD has also found application in:

I model based CF recommender systems

I latent factors

I image compression

I and much more..
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Variance and Covariance - EVS / SVD computation

Eigenvalue algorithms are iterative, using power iteration

bk+1 =
Abk
||Abk ||

Vector b0 is either an approximation of the dominant eigenvector
of A or a random vector.
At every iteration, the vector bk is multiplied by the matrix A and
normalized
If A has an eigenvalue that is greater than its other eigenvalues
and the starting vector b0 has a non zero component in the
direction of the associated eigenvector, then the following bk will
converge to the dominant eigenvector.

After the dominant eigenvector is found, the matrix can be rotated
and truncated to remove the effect of the dominant eigenvector,
then repeated to find the next dominant eigenvector, etc.
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Variance and Covariance - EVS / SVD computation

More efficient (and complex) algorithms exist

I Using Raleigh Quotient

I Arnoldi Iteration

I Lanczos Algorithm

Can also use Gram-Schmidt to find the orthonormal basis of the
top r eigenvectors
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Variance and Covariance - EVS / SVD computation

In practice, we use the library implementation, usually from
LAPACK (numpy matrix operations usually involve LAPACK
underneath)

These algorithms work very efficiently for small to medium sized
matrices, as well as for large, sparse matrices, but not really
massive matrices (e.g. in pageRank)
There are variations to find the smallest non-zero eigenvectors.
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Variance and Covariance - Summary

Covariance measures how different dimensions change together:

I Represented by a matrix

I Eigenvalue decomposition gives eigenvalue - eigenvector pairs

I The dominant eigenvector gives the principal axis

I The Eigenvalue is proportional to the variance along that axis

I The principal axes give a basis set, describing the directions of
greatest variance

PCA: aligns data with its principal axes, allows dimensional
reduction losing the least information by discounting axes with low
variance

SVD: a general matrix factorisation tool with many uses.
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