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Variance and Covariance - Expectation

Recap :

» Expectation and Variance
» Covariance

P> Basis set

> PCA

» SVD, truncated SVD
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Variance and Covariance - Expectation

A random variable takes on different values due to chance

The sample values from a single dimension of a featurespace can
be considered to be a random variable

The expected value E[X] is the most likely value a random variable
will take.

If we assume that the values an element of a feature can take are
all equally likely then the expected value is just the mean value.
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Variance and Covariance - Variance

Variance = The expected squared difference from the mean
E[(X - E[X])?]

i.e. the mean squared difference from the mean

o) = = 7 > = k)
i=1

n n <

A measure of how spread out the data is
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Variance and Covariance - Covariance

Covariance = the product of the expected difference between each
feature and its mean

E[(x — E[x)(y — Ely])]
i.e. it measures how two variables change together

n

700y) =+ D= )y~ i)

i=1
When both variables are the same, covariance = variance, as
o(x,x) = a?(x)
If 72 = 0 then the variables are uncorrelated
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Variance and Covariance - Covariance

A covariance matrix encodes how all features vary together
For two dimensions:

For n dimensions:

o(x1,x1) o(x1,x2) ... o(x1,xn)
o(x2,x1) o(x2,x2) ... o(x2,xn)
o(xn,x1) (X, x2) ... 0(Xn,Xxn)

This matrix must be square symmetric
(x cannot vary with y differently to how y varies with x!)
2d covariance demo
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Variance and Covariance - Covariance

Mean Centering = subtract the of all the vectors from each vector
This gives centered data, with mean at the origin

-10
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Variance and Covariance - Covariance

Mean Centering = subtract the of all the vectors from each vector
This gives centered data, with mean at the origin

-0.5 -0.5

-10 -10

-15 -15

-2.0 -2.0
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

ipynb mean centering demo
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Variance and Covariance - Covariance

If you have a set of mean centred data with d dimensions, where
each row is your data point:

/ =

X21 X22 ... Xod

Then its inner product is proportional to the covariance matrix

CxZ"z
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Variance and Covariance - Covariance

Principal axes of variation:
1st principal axis: direction of greatest variance
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Variance and Covariance - Covariance

2nd Principal axis: direction orthogonal to 1st principal axis in
direction of greatest variance

10/28



Variance and Covariance - Basis Set
In linear algebra, a basis set is defined for a space with the
properties:
» They are all linearly independent
» They span the whole space
Every vector in the space can be described as a combination of
basis vectors
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Variance and Covariance - Basis Set
In linear algebra, a basis set is defined for a space with the
properties:
» They are all linearly independent
» They span the whole space

Every vector in the space can be described as a combination of
basis vectors

(2,3)

Using Cartesian coordinates, we describe every vector as a

combination of x and y directions 11/28



Variance and Covariance - Basis Set

Eigenvectors and eigenvalues
An eigenvector is a vector that when multiplied by a matrix A
gives a value that is a multiple of itself, i.e.:

Ax = \x
The eigenvalue A\ is the multiple that it should be multiplied by.
eigen comes from German, meaning 'Characteristic’ or 'Own’

for an n x n dimensional matrix A there are n
eigenvector-eigenvalue pairs
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Variance and Covariance - Basis Set

So if A is a covariance matrix, then the eigenvectors are its
principal axes.

The eigenvalues are proportional to the variance of the data along
each eigenvector

The eigenvector corresponding to the largest eigenvalue is the first
principal axis
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Variance and Covariance - Basis Set

To find eigenvectors and eigenvalues for smaller matrices, there are
algebraic solutions, and all values can be found
For larger matrices, numerical solutions are found, using
eigendecomposition.
Eigen - Value - Decomposition (EVD):

A=QAQ™

Where @ is a matrix where the columns are the eigenvectors, and
A is a matrix with eigenvalues along the corresponding diagonal

Covariance matrices are real symmetric, so Q! = QT Therefore:
A=QAQT

This diagonalisation of a covariance matrix gives the principal axes
and their relative magnitudes
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Variance and Covariance - Basis Set

A=QAQT

This diagonalisation of a covariance matrix gives the principal axes
and their relative magnitudes

Usually the implementation will order the eigenvectors such that
the eigenvalues are sorted in order of decreasing value.

Some solvers only find the top k eigenvalues and corresponding
eigenvectors, rather than all of them.

Java demo: EVD and component analysis
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Variance and Covariance - PCA
Principal Component Analysis - PCA
Projects the data in to a lower dimensional space, while keeping as
much of the information as possible.

21
X=13 2
33

For example: data set X can be transformed so only information
from the x dimension is retained using a projection matrix P:
Xp = XP

x  Original Data
+ Projected Data
*
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Variance and Covariance - PCA

However if a different line is chosen, more information can be
retained.

40
% Original Data

35 * Projected Data
30
25
20

15

0s

0.0

This process can be reversible, (Using X = X,P~1) but this is
lossy if the dimensionality has been changed.
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Variance and Covariance - PCA
In PCA, a line is chosen that minimises the orthogonal distances of
the data points from the projected space.
It does this by keeping the dimensions where it has the most
variation, i.e. using the directions provided by the eigenvectors
corresponding to the largest eigenvalues of the estimated
covariance matrix
It uses the mean centred data to give the matrix proportional to
the covariance matrix

F

x  Original Data
% Mean Centred Data

37« Projected Data

(ipynb projection demo)
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Variance and Covariance - PCA

Algorithm 1: PCA algorithm using EVD

Data: N data points with feature vectors X; i=1... N
Z = meanCentre(X);

eigVals, eigVects = eigendecomposition(Z ' Z);

take k eigVects corresponding to k largest eigVals;
make projection matrix P;

Project data Xp = ZP in to lower dimensional space;

(Java PCA demo)
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Variance and Covariance - SVD

Eigenvalue Decomposition, EVD, A = QAQT only works for
symmetric matrices.
Singular value decomposition - SVD

A=UzVvT

where U and V are both different orthogonal matrices, and X is a
diagonal matrix
Any matrix can be factorised this way.

Orthogonal matrices are where each column is a vector pointing in
an othogonal direction to each other, UTU = UUT = I
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Variance and Covariance - SVD

m X n Z m X p pxp pXxn

Where p is rank of matrix A

U called left singular vectors, contains the eigenvectors of AAT
V called right singular vectors, contains the eigenvectors of AT A
Y. contains square roots of eigenvalues of AAT and AT A

If A is matrix of mean centred featurevectors, V' contains principal
components of the covariance matrix
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Variance and Covariance - SVD

Algorithm 2: PCA algorithm using SVD

Data: N data points with feature vectors X; i=1... N

Z = meanCentre(X);

U, £, V =5SVD(2),

take k columns of V corresponding to the largest k values of ¥;
make projection matrix P;

Project data Xp = ZP in to lower dimensional space;

Better than using EVD of Z7 Z as:

P has better numerical stability
» can be faster
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Variance and Covariance - SVD

SVD has better numerical stability:
E.g. Lauchli matrix:

111 ,
1 ¢00 . 1+ 1 1
XTleonS =1 e 1
100 1 1 1+ €2
“Ylo o te

If € is very small, 1 + €2 will be counted as 1, so information is lost
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Variance and Covariance - Truncated SVD

A U, u rxry rx ny
m x n m X p pXp pXxn

Q

mXr

Uses only the largest r singular values (and corresponding left and
right vectors)

This can give a low rank approximation of A, A= Ux, Vv,

has the effect of minimising the Frobenius norm of the difference
between A and A
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Variance and Covariance - SVD

SVD can be used to give a Pseudoinverse:

AT = vz tyT

This is used to solve Ax = b for x where ||Ax — b||2 is minimised
i.e. in least squares regression x = ATh
Also useful in solving homogenous linear equations Ax = 0
SVD has also found application in:

» model based CF recommender systems

> latent factors

P> image compression

>

and much more..

25/28



Variance and Covariance - EVS / SVD computation

Eigenvalue algorithms are iterative, using power iteration

b oAb
T Ab]

Vector by is either an approximation of the dominant eigenvector
of A or a random vector.

At every iteration, the vector by is multiplied by the matrix A and
normalized

If A has an eigenvalue that is greater than its other eigenvalues
and the starting vector by has a non zero component in the
direction of the associated eigenvector, then the following by will
converge to the dominant eigenvector.

After the dominant eigenvector is found, the matrix can be rotated
and truncated to remove the effect of the dominant eigenvector,
then repeated to find the next dominant eigenvector, etc.
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Variance and Covariance - EVS / SVD computation

More efficient (and complex) algorithms exist

» Using Raleigh Quotient
» Arnoldi lteration
» Lanczos Algorithm

Can also use Gram-Schmidt to find the orthonormal basis of the
top r eigenvectors
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Variance and Covariance - EVS / SVD computation

In practice, we use the library implementation, usually from
LAPACK (numpy matrix operations usually involve LAPACK
underneath)

These algorithms work very efficiently for small to medium sized
matrices, as well as for large, sparse matrices, but not really
massive matrices (e.g. in pageRank)

There are variations to find the smallest non-zero eigenvectors.
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Variance and Covariance - Summary

Covariance measures how different dimensions change together:
> Represented by a matrix
» Eigenvalue decomposition gives eigenvalue - eigenvector pairs
> The dominant eigenvector gives the principal axis
> The Eigenvalue is proportional to the variance along that axis
» The principal axes give a basis set, describing the directions of
greatest variance

PCA: aligns data with its principal axes, allows dimensional
reduction losing the least information by discounting axes with low
variance

SVD: a general matrix factorisation tool with many uses.
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