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Recap – Recommendation Systems

Content-based 
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User-based 
Collaborative

1. Finding Similar Users 2. Prediction
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e.g., 

Note: The similarities (0.8, 0.6) above are merely used for demonstration. With 
Cosine similarity, they'd be 0.99 and 0.98 if we assume the missing ratings can 
be replaced with the user's average on other films excluding ‘Star Battles’ (e.g., 
"Deadly Weapon" with Alice is 4.5).
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Discovering Groups – Roadmap



4/42

Discovering Groups – Textbook

Programming Collective Intelligence: Building Smart Web 2.0 
Applications T. Segaran. 



5/42

Discovering Groups – Overview (1/5)

• Clustering algorithms group data, just using the feature vectors

– Unsupervised: no group labels for training

– Key idea: data with similar features grouped together

– Can be

• Hard (each item assigned to one group)

• Soft (allow overlapping groups)

Source: K. Grauman

Grouping pixels based on color similarity 

Feature space: 
color value (3D)
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Discovering Groups – Overview (2/5)

https://marlabskochi.github.io 

https://marlabskochi.github.io/
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Discovering Groups – Overview (3/5)

Credit: Pratik Thorat

Clustering Algorithm (1/3) – K-means

https://www.linkedin.com/pulse/unraveling-clustering-algorithms-from-evolution-pratik-thorat/
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Discovering Groups – Overview (4/5)

Credit: Pratik Thorat

Clustering Algorithm (2/3) – Hierarchical/Agglomerative (Divisive not 
learned in this lecture) 

https://www.linkedin.com/pulse/unraveling-clustering-algorithms-from-evolution-pratik-thorat/
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Discovering Groups – Overview (5/5)

Credit: Pratik Thorat

Clustering Algorithm (2/3) – DBSCAN

https://www.linkedin.com/pulse/unraveling-clustering-algorithms-from-evolution-pratik-thorat/
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o LO1: Comprehend the key ideas and the essential mathematical 
formulations employed in clustering methods (exam).

v E.g., how is sum of squared error (SSE) defined?

v E.g., understand the pros and cons of the learned algorithms

o LO2: Compute the fundamental stages of learned clustering 
approaches (exam).

v E.g., given a dataset and a distance metric, be prepared to follow the selected 
clustering algorithm to cluster the instances in the dataset

o LO3: Implement and evaluate the learned clustering algorithms using 
Python (course work)

Discovering Groups – Learning Outcomes

Assessment hints: Multi-choice Questions (single answer: concepts, calculation etc)

o Textbook Exercises: textbooks (Programming + Mining) 
o Other Exercises: https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
o ChatGPT or other AI-based techs 

https://www-users.cse.umn.edu/~kumar001/dmbook/sol.pdf
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Discovering Groups – K-means

Otherwise, 𝑟$,& = 0

Source: D. Cremers

The used objective function is Sum of Squared Error 
(SSE)
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Discovering Groups – K-means

Credit: Jo Grundy
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Discovering Groups – K-means

Credit: Jo Grundy

E-step: Estimate the posterior probabilities…

M-step: Estimate new parameters 

Lecture: Maximum Likelihood Estimation
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Discovering Groups – K-means
1D Example

Source: D. Cremers

𝜇! 𝜇"
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Discovering Groups – K-means
1D Example

Source: D. Cremers

𝜇! 𝜇"



16/42

Discovering Groups – K-means
1D Example

Source: D. Cremers

𝜇! 𝜇"
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Discovering Groups – K-means
1D Example

Source: D. Cremers

𝜇! 𝜇"
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Discovering Groups – K-means
1D Example

Source: D. Cremers

𝜇! 𝜇"
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Discovering Groups – K-means
2D Example

• Real data set
• Radom initialization

• Magenta line is ‘decision 
boundary’

Source: D. Cremers

Source: D. Cremers

Initialization Membership update 

Center update Membership update Center update Membership update 

Center update Membership update 
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Discovering Groups – K-means
Sum of Squared Error (SSE) Curve

• After every step the cost function 
J is minimized

• Blue steps: update assignments

• Red steps: update means
• Convergence after 4 rounds

Source: D. Cremers
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Discovering Groups – K-means

K-means can quickly and cheaply cluster data.

Problems?
• need to specify the cluster number k
• depends on good initial centroid guesses
• may converge on local minimum
• assumes spherical data (or ellipsoid-shaped clusters, or at 

best convex clusters)

Gaussian Mixture models (GMM) can work better, using a 
generalization of K-means (assuming each cluster is Gaussian), 
not discussed in this lecture.
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Discovering Groups – DBSCAN

• Idea: uses the local density of points to determine the 
clusters, rather than using only the distance between points

where               represents the distance between x and y, 𝜺 indicates Max 
radius, and x is a core point if                                 , where minpts is a Min 
number that is user-defined local density or frequency threshold

          
• x belongs to a density-based cluster when 
  

where z is another data point, minpts is a Min number that is user-defined 
local density or frequency threshold

Max radius is the limit on which to look for neighbours
Min number is the lower limit on what can be in a cluster

or
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Discovering Groups – DBSCAN

Credit: Jo Grundy
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Discovering Groups – DBSCAN

https://www.youtube.com/watch?v=RDZUdRSDOok 

https://www.youtube.com/watch?v=RDZUdRSDOok
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Discovering Groups – DBSCAN

DBSCAN works well on any shape of data and is robust 
to outliers.

Problems?
• needs radius & minimum number specified
• needs a distance parameter 
• same parameter may not work for different 

cluster density
• can struggle in high dimensions

Credit: Jo Grundy
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Discovering Groups – Hierarchical Clustering

Creates a binary tree that recursively groups pairs 
of similar items or clusters

Can be:
• Agglomerative (bottom up)
• Divisive (top down)

We will look at Agglomerative clustering. Needs a 
distance measure.

Credit: Jo Grundy
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Discovering Groups – Hierarchical Clustering

Credit: Jo Grundy
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Discovering Groups – Hierarchical Clustering

Linkage criterion: A measure of dissimilarity between clusters

Centroid Based:
• Dissimilarity is equal to distance between centroids
• Needs numeric feature vectors

Distance-Based:
• Dissimilarity is a function of distance between items in 

clusters
• Only needs precomputed measure of similarity between 

items

We could compute a distance matrix between points

Credit: Jo Grundy
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Discovering Groups – Hierarchical Clustering

Centroid based linkage:
• WPGMC: Weighted Pair Group Method with Centroids. 

When two clusters are combined into a new cluster, the 
average of the two centroids is the new centroid

• UPGMC: Unweighted Pair Group Method with Centroids. 
When two clusters are combined into a new cluster, the 
new centroid is recalculated based on the positions of the 
items

Credit: Jo Grundy
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Discovering Groups – Hierarchical Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

demo distances, not ground truth

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy
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Discovering Groups – Agglomerative Clustering

Credit: Jo Grundy



39/42

Discovering Groups – Hierarchical Clustering
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•‘ward’ minimizes the variance of the clusters being merged.

https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html
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Discovering Groups – Hierarchical Clustering

Pros:
• No need to pre-specify cluster numbers; cut the 

dendrogram at the desired level for the clusters.
• Dendrograms easily summarize data into a hierarchy, 

facilitating cluster examination and interpretation.

Cons:
• Needs a threshold to determine the number of clusters
• Non-trivial to select the best linkage method
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Discovering Groups – Summary

Credit: Jo Grundy
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Source: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-
examples-cluster-plot-cluster-comparison-py 

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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Discovering Groups – Appendix (1/2)

https://ailephant.com/how-to-program-mean-shift/ 

MeanShift Clustering 

https://ailephant.com/how-to-program-mean-shift/
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Discovering Groups – Appendix (2/2) 

Spectral Clustering 


