
Data Mining
Lecture 1: Recommender Systems

Jo Grundy

ECS Southampton

February 25, 2022

1 / 34

Recommender Systems - Introduction

Making recommendations: Big Money
35% of Amazons income from recommendations
Netflix recommendation engine worth 1$ Billion per year

When you know very little
about that person,
suggesting:

I things to buy,

I films to watch,

I books to read,

I people to date,

..is hard.

And yet, Amazon seems to be
able to recommend stuff I like.

2 / 34

Recommender Systems - Problem Formulation

You have a set of films and a set of users. The users have rated
some of the films.

Film Alice Bob Carol Dave

Love Really 4 1 4

Deadly Weapon 1 4 5

Fast and Cross 5 5 4

Star Battles 1 5
How can you predict what should go in the blanks?

3 / 34

Recommender Systems - Algorithms
They use one of three different types of algorithm:

Content based Filtering: eg IMDB, Rotten tomatoes
Creates a profile of features for each item, and a profile for each
user, with a weighted vector of features for the item.
Can use an average value of the rated item vector, or Bayesian
classifiers, ANNs, etc to decide.

Collaborative filtering:FaceBook, Amazon..
Does not rely on understanding the film, or book, or the user.
With a large amount of information on user preferences, predicts
what users will like based on their similarity to other users.
eg. Amazon: ”people who buy x also buy y”

Hybrid recommender systems: Netflix
Uses combinations of different approaches

We will examine Collaborative Filtering (CF) in this lecture.
4 / 34

Recommender Systems - Content based approach

Can use a vector of features for each film, eg romance, action

Film Alice Bob Carol Dave x1 romance x2 action

Love Really 4 1 4 1 0.1

Deadly Weapon 1 4 5 0.1 1

Fast and Cross 5 5 4 0.2 0.9

Star Fight 1 5 0.1 1

Each film can be described by the vector X = [1 x1 x2] (1 is for
the bias term)

Learn 2D parameter vector θ, where θTX gives the number of
stars for each user.
θ = [0 5 0] for someone who really likes romance films

5 / 34

Recommender Systems - Content based approach

Use Linear Regression to find user parameter vector θ where m is
the number of films rated by that user

min
θ

1

m

m∑
i=1

(θTXi − y)2 (1)

Can also use Bayesian classifiers, MLPs, etc.

Problems?
requires hand coded knowledge of film
not easy to scale up
user may not have rated many films

6 / 34

Recommender Systems - Collaborative Filtering

Collaborative Filtering example:
Alice likes Dr Who, Star Wars and Star Trek
Bob likes Dr Who and Star Trek
A recommender system would correlate the likes, and suggest that
Bob might like Star Wars too.
Personal preferences can be correlated.

Task: Discover patterns in observed behaviour across a community
of users

I Purchase history

I Item ratings

I Click counts

Predict new preferences based on those patterns

7 / 34

Recommender Systems - Collaborative Filtering

Collaborative filtering uses a range of approaches to accomplish
this task

I Neigbourhood based approach

I Model based approach

I Hybrid (Neighbourhood and model) based approach

This lecture will cover the Neighborhood based approach

8 / 34

Collaborative Filtering

Measure user preferences. Eg. Film recommendation
Users rate films between 0 and 5 stars

Life is
Beautiful

Seven
Samurai

Joker Schindler’s
List

The
Pianist

City of
God

Lee 2.5 3.5 3.0 3.5 3.0 2.5

Sofia 3.0 3.5 1.5 5.0 3.0 3.5

Miley 2.5 3.0 3.5 4.0

Justina 3.5 3.0 4.0 4.5 2.5

Donald 3.0 4.0 2.0 3.0 3.0 2.0

Mikey 3.0 4.0 5.0 3.0 3.5

Tristan 4.5 4.0 1.0

The data is sparse, there are missing values

9 / 34

Collaborative Filtering - Sparsity

Sparsity can be taken advantage of to speed up computations
Most libraries that do matrix algebra are based on LAPACK,
written in Fortan90
Computation is done by calls to the Basic Linear Algebra
Subprograms (BLAS).

This is how the Python numpy library does its linear algebra.

10 / 34

Collaborative Filtering - Sparsity

Compresssed Row Storage (CRS) 1

Matrix specified by three arrays: val , col ind and row ptr
val stores the non zero values
col ind stores column indices of each element in val
row ptr stores the index of the elements in val which start a row
E.g. What matrix would this give?
val = [1, 2, 9, 8, 2, -1, 4, 5, 2, 7]
col ind = [1, 2, 4, 3, 4, 1, 2, 4, 2, 3]
row ptr = [1, 4, 6, 9]

1 2 9

8 2

−1 4 5

2 7

1Harwell-Boeing sparse matrix format, Duff et al, ACM Trans. Math. Soft.,

15 (1989), pp. 1-14.
11 / 34

Collaborative Filtering - Sparsity

Analogously, there is also Compresssed Column Storage (CCS)
Matrix specified by three arrays: val , row ind and col ptr
val stores the non zero values
row ind stores row indices of each element in val
col ptr stores the index of the elements in val which start a column
E.g. What matrix would this give?
val = [2,2,5,3,1,4]
row ind = [1,4,3,1,2,1]
col ptr = [1,3,4,6]

2 3 4

1

5

2

The CCS is the CRS of AT

12 / 34

Collaborative Filtering - Sparsity
Also Block Compressed Row Format (BSR) :
val stores the non zero blocks
col ind stores column indices of each element in val
row ptr stores the index of the elements in val which start a row

val =

[
2

3 1

] [
4 7

3 1

] [
4 5

3

] [
1

1

]
row ind = [1,2,3,1]
col ptr = [1,2,4]

2

3 1

4 7 4 5

3 1 3

1

1

13 / 34

Collaborative Filtering - Feature Extraction
Features are stored in a ’feature vector’, a fixed length list of
numbers.

I The length of this vector is the number of dimensions
I Each vector represents a point and a direction in the

featurespace.
I Each vector must have the same dimensionality

A projection of encoded word vectors shows that similar words are
close to each other in feature space.

We say two things are similar if they have similar feature vectors,
i.e. are close to each other in featurespace.

14 / 34

Collaborative Filtering - Distance

There are a number of ways to measure distance in feature space:

I Euclidean Distance:

0 1 2 3 4
0

1

2

3

4

5 p

q

p and q are N-dimensional
feature vectors,
p = [p1, p2, ..., pN],
q = [q1, q2, ..., qN]

Euclidean distance:

||p − q|| =

√√√√ N∑
i=1

(qi − pi)2

15 / 34

Collaborative Filtering - Distance

I Manhattan Distance:

0 1 2 3 4
0

1

2

3

4

5 p

q

p and q are N-dimensional
feature vectors,
p = [p1, p2, ..., pN],
q = [q1, q2, ..., qN]

Manhattan distance:

||p − q||1 =
N∑
i=1

(qi − pi)

16 / 34

Collaborative Filtering - Distance

I Cosine Similarity

0 1 2 3 4
0

1

2

3

4

5 p

qθ

Only measures direction, not
magnitude of vector.

p and q are N-dimensional
feature vectors,
p = [p1, p2, ..., pN],
q = [q1, q2, ..., qN]

Cosine Similarity:

cos(θ) =
p.q
|p||q|

=

∑N
i=1 piqi√∑N

i=1 p
2
i

√∑N
i=1 q

2
i

17 / 34

Collaborative Filtering - User Similarity

Need to define a similarity score, based on the idea that similar
users have similar tastes, i.e. like the same movies.)
Needs to take in to account sparsity, not all users have seen all
movies.
Typically between 0 and 1, where 1 is the same, and 0 is totally
different

Can visualise the users in feature space, using two dimensions at a
time
Visualisation of users in film space ipynb

18 / 34

Collaborative Filtering - User Similarity

There are many ways to compute similarity based on Euclidean
distance
We could chose:

simL2(x , y) =
1

1 +
√∑

i∈Ixy (rx ,i − ry ,i)2

where rx ,i is the rating from user x for item i
Ixy is set of items rated by both x and y

i.e. when the distance is 0, the similarity is 1, but when the
distance is large, similarity → 0

19 / 34

Collaborative Filtering - User Similarity

Alternatively, calculate correlation of users, based on ratings they
share
Using Pearson’s Correlation: standard measure of dependence
between two related variables.

simPearson(x , y) =

∑
i∈Ixy (rx ,i − r̄x)(ry ,i − r̄y)√∑

i∈Ixy (rx ,i − r̄x)2
∑

i∈Ixy (ry ,i − r̄y)2

Where r̄x is average rating user x gave for all items in Ixy
Correlation between users in ipynb

20 / 34

Collaborative Filtering - User Similarity

Can also use cosine similarity

simcos(x , y) =

∑
i∈Ixy rx ,i ry ,i√∑

i∈Ixy r
2
xi

√∑
i∈Ixy r

2
yi

Only performed over the items which are rated by both users

21 / 34

Collaborative Filtering - User Similarity

Users are inconsistent. Some users always give out 5s to films they
like, whereas some are more picky.
For example, look at Lisa and Jill, both rank the films in the same
order, but give different ratings.
Pearson correlation corrects for this, but Euclidean similarity
doesn’t.
Data normalisation and mean centering can overcome this.

Data standardisation

22 / 34

Collaborative Filtering - User Filtering

We now have a set of measures for computing the similarity
between users
Produce a ranked list of best matches to a target user. Typically
want the top-N users
May only want to consider a subset of users, i.e. those who rated a
particular item.
Ranking users by similarity ipynb

23 / 34

Collaborative Filtering - Recommending

Now we have a list of similar users, how can we recommend items?
Predict rating ru,i of item i by user u as an aggregation of the
ratings of item i by users similar to u

ru,i = aggrû∈U(rû,i)

Where U is the set of top users most similar to u that rated item i
Multiply the score by the similarity of the user
Normalise by sum of similarities (otherwise items rated more often
will dominate)

ru,i =

∑
û∈U sim(u, û)rû,i∑
û∈U |sim(u, û)|

This is User Based Filtering
Demo:User based recommendation

24 / 34

Collaborative Filtering - User Based Filtering

Can also aggregate by computing average over similar users

ru,i =
1

N

∑
Û∈U

rÛ,i

Or by subtracting the average user rating score for all the items
they scored, this is to compensate for people that judge generously
or meanly.

ru,i = r̄u +

∑
û∈U sim(u, û)(rû,i − r̄û)∑

û∈U |sim(u, û)|

25 / 34

Collaborative Filtering - User Based Filtering

We can also compute similarity between items, using the same
method.
This provides a fuzzy basis for recommending alternative items.

There are more structured ways of identifying what products
people buy together using ”Market Basket Analysis”

Demo: Item Item Similarity

26 / 34

Collaborative Filtering - User Based Filtering

Problems?

I Need to compute the similarity against every user.

I Doesn’t scale up to millions of users.

I Computationally hard

I With many items, may be little overlap, making the similarity
calculation hard

27 / 34

Collaborative Filtering - Item Based Filtering

The comparisons between items will not change as frequently as
comparisons between users

So?

I Precompute and store the most similar items for each item

To make a recommendation for a user:

I Look at top rated items

I Aggregate similar items using precomputed similarities

These similarities will change with new ratings, but will change
slowly
Demo: Precomputing Item Similarity

28 / 34

Collaborative Filtering - Item Based Filtering

To compute recommendations using this approach:

Estimate the rating for unrated item î that has a top-N similarity
to a rated item i :

ru,î =

∑
i∈I sim(î , i)ru,i∑
i∈I sim(î , i)

Where I is the subset of all N items similar to î
Demo: Item based recommendation

29 / 34

Collaborative Filtering - Comparing Item and User based
Filtering

User Based Filtering:

I Easier to implement

I No maintenance of comparisons

I Deals well with datasets that frequently change

I Deals well with small dense datasets

Item Based Filtering:

I Maintenance of comparison data necessary

I Deals well with small dense datasets

I Also deals well with larger sparse datasets

I Deals well with frequently changing users

30 / 34

Collaborative Filtering - Problems

Problems?
The ’cold start’ problem
Collaborative filtering will not work for a new user, or new item.

31 / 34

Collaborative Filtering - Solutions

For new items: Hybrid approach

I Use content based features to find similar items

I Bootstrap ratings for the new item by averaging the ratings
users gave to similar items

32 / 34

Collaborative Filtering - Solutions

For new users: Harder

I Bootstrap user profile from ’cookies’

I Ask new users questions

33 / 34

Collaborative Filtering - Summary

Recommender systems are worth millions
Collaborative Filtering:

I Uses peoples behaviour to gather information

I Doesn’t need content based features
User based Neighbourhood approach:

I Computes similarities between users
I Predicts unseen item weights using ratings of similar users

Item based Neighbourhood approach:

I Precomputes similarities between items
I Predicts unseen user ratings using ratings of similar items

34 / 34

